Av(12345, 12354, 12435, 13425, 21345, 21354, 21435, 23415, 31245, 31254, 31425, 32415, 41235, 41325, 42315)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 105, 478, 2233, 10608, 50965, 246805, 1202100, 5880279, 28859168, 141997666, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 23 rules.

Found on January 22, 2022.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{20}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= y x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\ F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{18}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{17}\! \left(x , y\right) &= -\frac{-y F_{15}\! \left(x , y\right)+F_{15}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{22}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\ \end{align*}\)