Av(12345, 12354, 12435, 13245, 13254, 13425, 13452, 13524, 13542, 14235, 14325, 14352, 21345, 21354, 21435, 24135, 41235, 41325, 41352, 42135)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 100, 434, 1934, 8828, 41066, 194024, 928503, 4491346, 21924868, 107873194, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion Expand Verified" and has 22 rules.

Found on November 05, 2021.

Finding the specification took 11 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 22 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{18}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{18}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{17}\! \left(x , y\right) &= -\frac{-y F_{6}\! \left(x , y\right)+F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ \end{align*}\)

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 33 rules.

Found on January 23, 2022.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 33 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{31}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{8}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x , 1\right)\\ F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{27}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right) F_{22}\! \left(x , y\right) F_{23}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= y x\\ F_{23}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{24}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{26}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{26}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= -\frac{-y F_{18}\! \left(x , y\right)+F_{18}\! \left(x , 1\right)}{-1+y}\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{30}\! \left(x , y\right) &= -\frac{-y F_{23}\! \left(x , y\right)+F_{23}\! \left(x , 1\right)}{-1+y}\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{28}\! \left(x , 1\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Req Corrob Expand Verified" and has 23 rules.

Found on November 05, 2021.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= y x\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{19}\! \left(x \right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{20}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{19}\! \left(x \right)\\ F_{18}\! \left(x , y\right) &= -\frac{-y F_{7}\! \left(x , y\right)+F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{19}\! \left(x \right) &= x\\ F_{20}\! \left(x , y\right) &= F_{19}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\ \end{align*}\)