Av(1234, 246135, 256134, 346125, 356124, 456123)
View Raw Data
Counting Sequence
1, 1, 2, 6, 23, 103, 508, 2656, 14381, 79533, 445638, 2517738, 14301411, 81529971, 465953088, ...
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Req Corrob" and has 28 rules.

Found on July 20, 2021.

Finding the specification took 92 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 28 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{21}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{21}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= F_{7}\! \left(x , 1, y\right)\\ F_{7}\! \left(x , y , z\right) &= F_{8}\! \left(x , y z , z\right)\\ F_{8}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y , z\right)+F_{19}\! \left(x , y , z\right)+F_{9}\! \left(x , y , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{10}\! \left(x , y , z\right) F_{13}\! \left(x , y\right)\\ F_{10}\! \left(x , y , z\right) &= \frac{z F_{11}\! \left(x , y , z\right)-F_{11}\! \left(x , y , 1\right)}{-1+z}\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)\\ F_{12}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right) F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= y x\\ F_{14}\! \left(x , y , z\right) &= F_{13}\! \left(x , z\right) F_{15}\! \left(x , y , z\right)\\ F_{15}\! \left(x , y , z\right) &= \frac{-z F_{16}\! \left(x , 1, z\right)+y F_{16}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{16}\! \left(x , y , z\right) &= F_{11}\! \left(x , y z , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{13}\! \left(x , z\right) F_{18}\! \left(x , y , z\right)\\ F_{18}\! \left(x , y , z\right) &= \frac{-z F_{7}\! \left(x , 1, z\right)+y F_{7}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , y , z\right) F_{21}\! \left(x \right)\\ F_{20}\! \left(x , y , z\right) &= \frac{z F_{8}\! \left(x , y , z\right)-F_{8}\! \left(x , y , 1\right)}{-1+z}\\ F_{21}\! \left(x \right) &= x\\ F_{22}\! \left(x \right) &= F_{21}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x , 1\right)\\ F_{24}\! \left(x , y\right) &= \frac{y F_{25}\! \left(x , y\right)-F_{25}\! \left(x , 1\right)}{-1+y}\\ F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{24}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row And Col Placements Tracked Fusion" and has 29 rules.

Found on July 20, 2021.

Finding the specification took 86 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 29 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{22}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , 1, y\right)\\ F_{8}\! \left(x , y , z\right) &= F_{9}\! \left(x , y z , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y , z\right)+F_{18}\! \left(x , y , z\right)+F_{20}\! \left(x , y , z\right)\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right) F_{14}\! \left(x , y\right)\\ F_{11}\! \left(x , y , z\right) &= -\frac{-z F_{12}\! \left(x , y , z\right)+F_{12}\! \left(x , y , 1\right)}{-1+z}\\ F_{12}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y , z\right)+F_{15}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= F_{12}\! \left(x , y , z\right) F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= y x\\ F_{15}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{16}\! \left(x , y , z\right)\\ F_{16}\! \left(x , y , z\right) &= -\frac{z F_{17}\! \left(x , 1, z\right)-y F_{17}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{17}\! \left(x , y , z\right) &= F_{12}\! \left(x , y z , z\right)\\ F_{18}\! \left(x , y , z\right) &= F_{14}\! \left(x , z\right) F_{19}\! \left(x , y , z\right)\\ F_{19}\! \left(x , y , z\right) &= -\frac{z F_{8}\! \left(x , 1, z\right)-y F_{8}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{20}\! \left(x , y , z\right) &= F_{21}\! \left(x , y , z\right) F_{22}\! \left(x \right)\\ F_{21}\! \left(x , y , z\right) &= -\frac{-z F_{9}\! \left(x , y , z\right)+F_{9}\! \left(x , y , 1\right)}{-1+z}\\ F_{22}\! \left(x \right) &= x\\ F_{23}\! \left(x \right) &= F_{22}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x , 1\right)\\ F_{25}\! \left(x , y\right) &= -\frac{-y F_{26}\! \left(x , y\right)+F_{26}\! \left(x , 1\right)}{-1+y}\\ F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y\right)+F_{28}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{22}\! \left(x \right) F_{25}\! \left(x , y\right)\\ \end{align*}\)