Av(1324, 1342, 1432, 2143, 2413, 2431, 3412, 4132)
Generating Function
\(\displaystyle \frac{x^{6}-2 x^{5}-2 x^{4}-x^{3}+5 x^{2}-4 x +1}{\left(x^{2}-3 x +1\right) \left(-1+x \right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 16, 39, 96, 242, 621, 1610, 4196, 10963, 28676, 75046, 196441, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(-1+x \right)^{2} F \! \left(x \right)+x^{6}-2 x^{5}-2 x^{4}-x^{3}+5 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 16\)
\(\displaystyle a \! \left(5\right) = 39\)
\(\displaystyle a \! \left(6\right) = 96\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-2 n +3, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 16\)
\(\displaystyle a \! \left(5\right) = 39\)
\(\displaystyle a \! \left(6\right) = 96\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-2 n +3, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(5-\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(5+\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}+2 n -5 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 28 rules.
Found on July 23, 2021.Finding the specification took 2 seconds.
Copy 28 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\
\end{align*}\)