Av(1234, 1432)
View Raw Data
Generating Function
x24x+1(4x1)(x1)
Counting Sequence
1, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526, 1398102, 5592406, 22369622, ...
Implicit Equation for the Generating Function
(4x1)(x1)F(x)x2+4x1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(n+1)=4a(n)2,n3
Explicit Closed Form
{1n=023+4n12otherwise
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point (i,j) represents how many permutations have value j at index i (darker = more).

This specification was found using the strategy pack "Regular Insertion Encoding Bottom" and has 160 rules.

Found on April 28, 2021.

Finding the specification took 4 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 160 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F13(x)F4(x)F4(x)=F0(x)+F5(x)F5(x)=F32(x)+F6(x)F6(x)=F7(x)F7(x)=F13(x)F8(x)F8(x)=F10(x)+F9(x)F9(x)=F1(x)+F6(x)F10(x)=F11(x)+F15(x)F11(x)=F12(x)F12(x)=F13(x)F14(x)F13(x)=xF14(x)=F1(x)+F11(x)F15(x)=F16(x)+F17(x)+F19(x)F16(x)=0F17(x)=F13(x)F18(x)F18(x)=F15(x)+F6(x)F19(x)=F13(x)F20(x)F20(x)=F21(x)+F25(x)F21(x)=F11(x)+F22(x)F22(x)=F23(x)F23(x)=F13(x)F24(x)F24(x)=F22(x)+F6(x)F25(x)=F26(x)+F29(x)F26(x)=F27(x)F27(x)=F13(x)F28(x)F28(x)=F11(x)+F26(x)F29(x)=F30(x)F30(x)=F13(x)F31(x)F31(x)=F15(x)+F29(x)F32(x)=F156(x)+F16(x)+F33(x)F33(x)=F13(x)F34(x)F34(x)=F35(x)+F36(x)F35(x)=F2(x)+F32(x)F36(x)=F37(x)+F63(x)F37(x)=F16(x)+F38(x)+F40(x)F38(x)=F13(x)F39(x)F39(x)=F2(x)+F37(x)F40(x)=F13(x)F41(x)F41(x)=F42(x)+F46(x)F42(x)=F11(x)+F43(x)F43(x)=F44(x)F44(x)=F13(x)F45(x)F45(x)=F2(x)+F43(x)F46(x)=F15(x)+F47(x)F47(x)=2F16(x)+F48(x)+F50(x)F48(x)=F13(x)F49(x)F49(x)=F32(x)+F47(x)F50(x)=F13(x)F51(x)F51(x)=F52(x)+F56(x)F52(x)=F43(x)+F53(x)F53(x)=F54(x)F54(x)=F13(x)F55(x)F55(x)=F32(x)+F53(x)F56(x)=F57(x)+F60(x)F57(x)=F58(x)F58(x)=F13(x)F59(x)F59(x)=F37(x)+F57(x)F60(x)=F61(x)F61(x)=F13(x)F62(x)F62(x)=F60(x)+F63(x)F63(x)=F16(x)+F50(x)+F64(x)+F66(x)F64(x)=F13(x)F65(x)F65(x)=F32(x)+F63(x)F66(x)=F13(x)F67(x)F67(x)=F68(x)+F90(x)F68(x)=F15(x)+F69(x)F69(x)=2F16(x)+F70(x)+F77(x)F70(x)=F13(x)F71(x)F71(x)=F69(x)+F72(x)F72(x)=F73(x)F73(x)=F13(x)F74(x)F74(x)=F75(x)+F76(x)F75(x)=F2(x)+F72(x)F76(x)=F43(x)+F69(x)F77(x)=F13(x)F78(x)F78(x)=F79(x)+F83(x)F79(x)=F43(x)+F80(x)F80(x)=F81(x)F81(x)=F13(x)F82(x)F82(x)=F72(x)+F80(x)F83(x)=F84(x)+F87(x)F84(x)=F85(x)F85(x)=F13(x)F86(x)F86(x)=F43(x)+F84(x)F87(x)=F88(x)F88(x)=F13(x)F89(x)F89(x)=F69(x)+F87(x)F90(x)=F122(x)+F91(x)F91(x)=F109(x)+F16(x)+F92(x)+F99(x)F92(x)=F13(x)F93(x)F93(x)=F91(x)+F94(x)F94(x)=F16(x)+F19(x)+F95(x)F95(x)=F13(x)F96(x)F96(x)=F97(x)+F98(x)F97(x)=F6(x)+F94(x)F98(x)=F15(x)+F91(x)F99(x)=F100(x)F13(x)F100(x)=F101(x)+F105(x)F101(x)=F102(x)+F22(x)F102(x)=F103(x)F103(x)=F104(x)F13(x)F104(x)=F102(x)+F94(x)F105(x)=F106(x)+F29(x)F106(x)=F107(x)F107(x)=F108(x)F13(x)F108(x)=F106(x)+F91(x)F109(x)=F110(x)F13(x)F110(x)=F111(x)+F115(x)F111(x)=F112(x)+F26(x)F112(x)=F113(x)F113(x)=F114(x)F13(x)F114(x)=F112(x)+F22(x)F115(x)=F116(x)+F119(x)F116(x)=F117(x)F117(x)=F118(x)F13(x)F118(x)=F116(x)+F26(x)F119(x)=F120(x)F120(x)=F121(x)F13(x)F121(x)=F119(x)+F29(x)F122(x)=2F16(x)+F123(x)+F130(x)+F143(x)F123(x)=F124(x)F13(x)F124(x)=F122(x)+F125(x)F125(x)=2F16(x)+F126(x)+F50(x)F126(x)=F127(x)F13(x)F127(x)=F128(x)+F129(x)F128(x)=F125(x)+F32(x)F129(x)=F122(x)+F47(x)F130(x)=F13(x)F131(x)F131(x)=F132(x)+F136(x)F132(x)=F133(x)+F53(x)F133(x)=F134(x)F134(x)=F13(x)F135(x)F135(x)=F125(x)+F133(x)F136(x)=F137(x)+F140(x)F137(x)=F138(x)F138(x)=F13(x)F139(x)F139(x)=F137(x)+F47(x)F140(x)=F141(x)F141(x)=F13(x)F142(x)F142(x)=F122(x)+F140(x)F143(x)=F13(x)F144(x)F144(x)=F145(x)+F149(x)F145(x)=F146(x)+F84(x)F146(x)=F147(x)F147(x)=F13(x)F148(x)F148(x)=F146(x)+F53(x)F149(x)=F150(x)+F153(x)F150(x)=F151(x)F151(x)=F13(x)F152(x)F152(x)=F150(x)+F57(x)F153(x)=F154(x)F154(x)=F13(x)F155(x)F155(x)=F153(x)+F60(x)F156(x)=F13(x)F157(x)F157(x)=F158(x)+F159(x)F158(x)=F6(x)+F72(x)F159(x)=F125(x)+F94(x)

This specification was found using the strategy pack "Point Placements" and has 572 rules.

Found on January 18, 2022.

Finding the specification took 62 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 572 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F29(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F14(x)F10(x)=F1(x)+F11(x)F11(x)=F12(x)F12(x)=F13(x)F4(x)F13(x)=F1(x)+F4(x)F14(x)=F15(x)+F17(x)F15(x)=F16(x)F16(x)=F13(x)F4(x)F17(x)=F18(x)+F19(x)+F24(x)F18(x)=0F19(x)=F20(x)F4(x)F20(x)=F11(x)+F21(x)F21(x)=F22(x)F22(x)=F23(x)F4(x)F23(x)=F4(x)F24(x)=F25(x)F4(x)F25(x)=F15(x)+F26(x)F26(x)=F27(x)F27(x)=F28(x)F4(x)F28(x)=F4(x)F29(x)=F2(x)+F30(x)F30(x)=F18(x)+F31(x)+F569(x)F31(x)=F32(x)F4(x)F32(x)=F33(x)+F54(x)F33(x)=F34(x)+F7(x)F34(x)=F18(x)+F35(x)+F45(x)F35(x)=F36(x)F4(x)F36(x)=F37(x)+F39(x)F37(x)=F11(x)+F38(x)F38(x)=F22(x)F39(x)=F17(x)+F40(x)F40(x)=2F18(x)+F41(x)+F43(x)F41(x)=F4(x)F42(x)F42(x)=F38(x)F43(x)=F4(x)F44(x)F44(x)=F26(x)F45(x)=F4(x)F46(x)F46(x)=F14(x)+F47(x)F47(x)=F48(x)+F49(x)F48(x)=F27(x)F49(x)=2F18(x)+F50(x)+F52(x)F50(x)=F4(x)F51(x)F51(x)=F21(x)F52(x)=F4(x)F53(x)F53(x)=F48(x)F54(x)=F30(x)+F55(x)F55(x)=F18(x)+F557(x)+F56(x)+F566(x)F56(x)=F4(x)F57(x)F57(x)=F58(x)+F69(x)F58(x)=F34(x)+F59(x)F59(x)=F18(x)+F60(x)+F64(x)+F67(x)F60(x)=F4(x)F61(x)F61(x)=F62(x)+F63(x)F62(x)=F38(x)F63(x)=F40(x)F64(x)=F4(x)F65(x)F65(x)=F39(x)+F66(x)F66(x)=F49(x)F67(x)=F4(x)F68(x)F68(x)=F47(x)F69(x)=F55(x)+F70(x)F70(x)=F127(x)+F18(x)+F502(x)+F563(x)+F71(x)F71(x)=F4(x)F72(x)F72(x)=F73(x)+F81(x)F73(x)=F59(x)+F74(x)F74(x)=F18(x)+F75(x)+F76(x)+F78(x)+F80(x)F75(x)=0F76(x)=F4(x)F77(x)F77(x)=F63(x)F78(x)=F4(x)F79(x)F79(x)=F66(x)F80(x)=0F81(x)=F70(x)+F82(x)F82(x)=F18(x)+F426(x)+F501(x)+F83(x)+F87(x)+F88(x)F83(x)=F4(x)F84(x)F84(x)=F85(x)+F86(x)F85(x)=F74(x)F86(x)=F82(x)F87(x)=0F88(x)=F4(x)F89(x)F89(x)=F90(x)F90(x)=F91(x)F91(x)=2F18(x)+F108(x)+F130(x)+F92(x)F92(x)=F4(x)F93(x)F93(x)=F94(x)+F98(x)F94(x)=F40(x)+F95(x)F95(x)=F96(x)F96(x)=F4(x)F97(x)F97(x)=F40(x)F98(x)=F91(x)+F99(x)F99(x)=2F18(x)+F100(x)+F104(x)+F105(x)+F107(x)F100(x)=F101(x)F4(x)F101(x)=F102(x)+F103(x)F102(x)=F95(x)F103(x)=F99(x)F104(x)=0F105(x)=F106(x)F4(x)F106(x)=F91(x)F107(x)=0F108(x)=F109(x)F4(x)F109(x)=F110(x)F110(x)=2F18(x)+F111(x)+F424(x)F111(x)=F112(x)F4(x)F112(x)=F113(x)+F115(x)F113(x)=F114(x)+F38(x)F114(x)=2F18(x)+F43(x)+F60(x)F115(x)=F110(x)+F116(x)F116(x)=2F18(x)+F117(x)+F127(x)+F130(x)F117(x)=F118(x)F4(x)F118(x)=F119(x)+F121(x)F119(x)=F114(x)+F120(x)F120(x)=F76(x)F121(x)=F116(x)+F122(x)F122(x)=2F18(x)+F107(x)+F123(x)+F87(x)+F88(x)F123(x)=F124(x)F4(x)F124(x)=F125(x)+F126(x)F125(x)=F120(x)F126(x)=F122(x)F127(x)=F128(x)F4(x)F128(x)=F129(x)+F90(x)F129(x)=F110(x)F130(x)=F131(x)F4(x)F131(x)=F132(x)F132(x)=2F18(x)+F133(x)+F378(x)F133(x)=F134(x)F4(x)F134(x)=F135(x)+F145(x)F135(x)=F136(x)+F26(x)F136(x)=F137(x)F137(x)=F138(x)F4(x)F138(x)=F139(x)F139(x)=F140(x)+F144(x)+F18(x)F140(x)=F141(x)F4(x)F141(x)=F142(x)+F4(x)F142(x)=F143(x)F143(x)=x2F144(x)=F15(x)F4(x)F145(x)=F132(x)+F146(x)F146(x)=2F18(x)+F147(x)+F375(x)+F376(x)F147(x)=F148(x)F4(x)F148(x)=F149(x)+F157(x)F149(x)=F136(x)+F150(x)F150(x)=F151(x)F151(x)=F152(x)F4(x)F152(x)=F153(x)F153(x)=2F18(x)+F154(x)+F156(x)F154(x)=F155(x)F4(x)F155(x)=F142(x)F156(x)=F4(x)F48(x)F157(x)=F146(x)+F158(x)F158(x)=2F18(x)+F159(x)+F163(x)+F164(x)+F165(x)F159(x)=F160(x)F4(x)F160(x)=F161(x)+F162(x)F161(x)=F150(x)F162(x)=F158(x)F163(x)=0F164(x)=0F165(x)=F166(x)F4(x)F166(x)=F167(x)F167(x)=2F18(x)+F168(x)+F357(x)+F422(x)F168(x)=F169(x)F4(x)F169(x)=F170(x)+F178(x)F170(x)=F153(x)+F171(x)F171(x)=F172(x)F172(x)=F173(x)F4(x)F173(x)=F174(x)F174(x)=2F18(x)+F175(x)+F177(x)F175(x)=F176(x)F4(x)F176(x)=F142(x)F177(x)=F26(x)F4(x)F178(x)=F167(x)+F179(x)F179(x)=2F18(x)+F180(x)+F184(x)+F185(x)+F327(x)F180(x)=F181(x)F4(x)F181(x)=F182(x)+F183(x)F182(x)=F171(x)F183(x)=F179(x)F184(x)=0F185(x)=F186(x)F4(x)F186(x)=F187(x)F187(x)=2F18(x)+F188(x)+F204(x)+F236(x)F188(x)=F189(x)F4(x)F189(x)=F190(x)+F194(x)F190(x)=F174(x)+F191(x)F191(x)=F192(x)F192(x)=F193(x)F4(x)F193(x)=F174(x)F194(x)=F187(x)+F195(x)F195(x)=2F18(x)+F196(x)+F200(x)+F201(x)+F203(x)F196(x)=F197(x)F4(x)F197(x)=F198(x)+F199(x)F198(x)=F191(x)F199(x)=F195(x)F200(x)=0F201(x)=F202(x)F4(x)F202(x)=F187(x)F203(x)=0F204(x)=F205(x)F4(x)F205(x)=F206(x)F206(x)=2F18(x)+F207(x)+F237(x)F207(x)=F208(x)F4(x)F208(x)=F209(x)+F215(x)F209(x)=F142(x)+F210(x)F210(x)=2F18(x)+F177(x)+F211(x)F211(x)=F212(x)F4(x)F212(x)=F213(x)+F214(x)F213(x)=F142(x)F214(x)=F174(x)F215(x)=F206(x)+F216(x)F216(x)=2F18(x)+F217(x)+F233(x)+F236(x)F217(x)=F218(x)F4(x)F218(x)=F219(x)+F223(x)F219(x)=F210(x)+F220(x)F220(x)=F221(x)F221(x)=F222(x)F4(x)F222(x)=F214(x)F223(x)=F216(x)+F224(x)F224(x)=2F18(x)+F203(x)+F225(x)+F229(x)+F230(x)F225(x)=F226(x)F4(x)F226(x)=F227(x)+F228(x)F227(x)=F220(x)F228(x)=F224(x)F229(x)=0F230(x)=F231(x)F4(x)F231(x)=F232(x)F232(x)=F187(x)F233(x)=F234(x)F4(x)F234(x)=F232(x)+F235(x)F235(x)=F206(x)F236(x)=F132(x)F4(x)F237(x)=F238(x)F4(x)F238(x)=F18(x)+F239(x)+F421(x)F239(x)=F240(x)F4(x)F240(x)=F241(x)+F251(x)F241(x)=F242(x)+F4(x)F242(x)=F144(x)+F18(x)+F243(x)F243(x)=F244(x)F4(x)F244(x)=F245(x)+F247(x)F245(x)=F246(x)+F4(x)F246(x)=F143(x)F247(x)=F139(x)+F248(x)F248(x)=2F18(x)+F177(x)+F249(x)F249(x)=F250(x)F4(x)F250(x)=F246(x)F251(x)=F238(x)+F252(x)F252(x)=F18(x)+F253(x)+F382(x)+F414(x)F253(x)=F254(x)F4(x)F254(x)=F255(x)+F264(x)F255(x)=F242(x)+F256(x)F256(x)=F156(x)+F18(x)+F257(x)+F261(x)F257(x)=F258(x)F4(x)F258(x)=F259(x)+F260(x)F259(x)=F246(x)F260(x)=F248(x)F261(x)=F262(x)F4(x)F262(x)=F247(x)+F263(x)F263(x)=F153(x)F264(x)=F252(x)+F265(x)F265(x)=F18(x)+F266(x)+F321(x)+F328(x)+F357(x)F266(x)=F267(x)F4(x)F267(x)=F268(x)+F276(x)F268(x)=F256(x)+F269(x)F269(x)=F18(x)+F270(x)+F271(x)+F273(x)+F275(x)F270(x)=0F271(x)=F272(x)F4(x)F272(x)=F260(x)F273(x)=F274(x)F4(x)F274(x)=F263(x)F275(x)=0F276(x)=F265(x)+F277(x)F277(x)=F18(x)+F278(x)+F282(x)+F283(x)+F324(x)+F327(x)F278(x)=F279(x)F4(x)F279(x)=F280(x)+F281(x)F280(x)=F269(x)F281(x)=F277(x)F282(x)=0F283(x)=F284(x)F4(x)F284(x)=F285(x)F285(x)=F286(x)F286(x)=2F18(x)+F236(x)+F287(x)+F302(x)F287(x)=F288(x)F4(x)F288(x)=F289(x)+F293(x)F289(x)=F248(x)+F290(x)F290(x)=F291(x)F291(x)=F292(x)F4(x)F292(x)=F248(x)F293(x)=F286(x)+F294(x)F294(x)=2F18(x)+F203(x)+F295(x)+F299(x)+F300(x)F295(x)=F296(x)F4(x)F296(x)=F297(x)+F298(x)F297(x)=F290(x)F298(x)=F294(x)F299(x)=0F300(x)=F301(x)F4(x)F301(x)=F286(x)F302(x)=F303(x)F4(x)F303(x)=F304(x)F304(x)=2F18(x)+F237(x)+F305(x)F305(x)=F306(x)F4(x)F306(x)=F307(x)+F309(x)F307(x)=F246(x)+F308(x)F308(x)=2F18(x)+F177(x)+F257(x)F309(x)=F304(x)+F310(x)F310(x)=2F18(x)+F236(x)+F311(x)+F321(x)F311(x)=F312(x)F4(x)F312(x)=F313(x)+F315(x)F313(x)=F308(x)+F314(x)F314(x)=F271(x)F315(x)=F310(x)+F316(x)F316(x)=2F18(x)+F203(x)+F282(x)+F283(x)+F317(x)F317(x)=F318(x)F4(x)F318(x)=F319(x)+F320(x)F319(x)=F314(x)F320(x)=F316(x)F321(x)=F322(x)F4(x)F322(x)=F285(x)+F323(x)F323(x)=F304(x)F324(x)=F325(x)F4(x)F325(x)=F326(x)F326(x)=F167(x)F327(x)=0F328(x)=F329(x)F4(x)F329(x)=F326(x)+F330(x)F330(x)=F286(x)+F331(x)F331(x)=F18(x)+F332(x)+F380(x)+F382(x)F332(x)=F333(x)F4(x)F333(x)=F334(x)+F338(x)F334(x)=F139(x)+F335(x)F335(x)=F156(x)+F18(x)+F211(x)+F336(x)F336(x)=F337(x)F4(x)F337(x)=F139(x)+F174(x)F338(x)=F331(x)+F339(x)F339(x)=F18(x)+F233(x)+F340(x)+F355(x)+F357(x)F340(x)=F341(x)F4(x)F341(x)=F342(x)+F347(x)F342(x)=F335(x)+F343(x)F343(x)=F18(x)+F221(x)+F275(x)+F344(x)+F345(x)F344(x)=0F345(x)=F346(x)F4(x)F346(x)=F153(x)F347(x)=F339(x)+F348(x)F348(x)=F18(x)+F229(x)+F230(x)+F327(x)+F349(x)+F353(x)F349(x)=F350(x)F4(x)F350(x)=F351(x)+F352(x)F351(x)=F343(x)F352(x)=F348(x)F353(x)=F354(x)F4(x)F354(x)=F167(x)F355(x)=F356(x)F4(x)F356(x)=F187(x)+F331(x)F357(x)=F358(x)F4(x)F358(x)=2F18(x)+F359(x)+F378(x)F359(x)=F360(x)F4(x)F360(x)=F361(x)+F363(x)F361(x)=F362(x)+F48(x)F362(x)=F137(x)F363(x)=F358(x)+F364(x)F364(x)=2F18(x)+F365(x)+F375(x)+F376(x)F365(x)=F366(x)F4(x)F366(x)=F367(x)+F369(x)F367(x)=F362(x)+F368(x)F368(x)=F151(x)F369(x)=F364(x)+F370(x)F370(x)=2F18(x)+F163(x)+F164(x)+F165(x)+F371(x)F371(x)=F372(x)F4(x)F372(x)=F373(x)+F374(x)F373(x)=F368(x)F374(x)=F370(x)F375(x)=0F376(x)=F377(x)F4(x)F377(x)=F331(x)F378(x)=F379(x)F4(x)F379(x)=F238(x)F380(x)=F381(x)F4(x)F381(x)=F206(x)+F238(x)F382(x)=F383(x)F4(x)F383(x)=F18(x)+F384(x)+F419(x)F384(x)=F385(x)F4(x)F385(x)=F386(x)+F390(x)F386(x)=F15(x)+F387(x)F387(x)=F18(x)+F243(x)+F388(x)F388(x)=F389(x)F4(x)F389(x)=F139(x)+F15(x)F390(x)=F383(x)+F391(x)F391(x)=F18(x)+F392(x)+F414(x)+F417(x)F392(x)=F393(x)F4(x)F393(x)=F394(x)+F398(x)F394(x)=F387(x)+F395(x)F395(x)=F18(x)+F257(x)+F261(x)+F396(x)F396(x)=F397(x)F4(x)F397(x)=F153(x)+F48(x)F398(x)=F391(x)+F399(x)F399(x)=F18(x)+F321(x)+F328(x)+F400(x)+F412(x)F400(x)=F4(x)F401(x)F401(x)=F402(x)+F405(x)F402(x)=F395(x)+F403(x)F403(x)=F18(x)+F270(x)+F271(x)+F273(x)+F404(x)F404(x)=0F405(x)=F399(x)+F406(x)F406(x)=F18(x)+F282(x)+F283(x)+F324(x)+F407(x)+F411(x)F407(x)=F4(x)F408(x)F408(x)=F409(x)+F410(x)F409(x)=F403(x)F410(x)=F406(x)F411(x)=0F412(x)=F4(x)F413(x)F413(x)=F167(x)+F358(x)F414(x)=F4(x)F415(x)F415(x)=F330(x)+F416(x)F416(x)=F238(x)+F304(x)F417(x)=F4(x)F418(x)F418(x)=F331(x)+F383(x)F419(x)=F4(x)F420(x)F420(x)=F2(x)+F238(x)F421(x)=F2(x)F4(x)F422(x)=F4(x)F423(x)F423(x)=F206(x)F424(x)=F4(x)F425(x)F425(x)=F238(x)F426(x)=F4(x)F427(x)F427(x)=F428(x)F428(x)=F429(x)F429(x)=2F18(x)+F430(x)+F497(x)+F499(x)F430(x)=F4(x)F431(x)F431(x)=F432(x)+F439(x)F432(x)=F433(x)+F49(x)F433(x)=F434(x)F434(x)=F4(x)F435(x)F435(x)=F436(x)F436(x)=2F18(x)+F43(x)+F437(x)F437(x)=F4(x)F438(x)F438(x)=F21(x)F439(x)=F429(x)+F440(x)F440(x)=2F18(x)+F441(x)+F445(x)+F446(x)+F496(x)F441(x)=F4(x)F442(x)F442(x)=F443(x)+F444(x)F443(x)=F433(x)F444(x)=F440(x)F445(x)=0F446(x)=F4(x)F447(x)F447(x)=F448(x)F448(x)=2F18(x)+F130(x)+F449(x)+F464(x)F449(x)=F4(x)F450(x)F450(x)=F451(x)+F455(x)F451(x)=F436(x)+F452(x)F452(x)=F453(x)F453(x)=F4(x)F454(x)F454(x)=F436(x)F455(x)=F448(x)+F456(x)F456(x)=2F18(x)+F107(x)+F457(x)+F461(x)+F462(x)F457(x)=F4(x)F458(x)F458(x)=F459(x)+F460(x)F459(x)=F452(x)F460(x)=F456(x)F461(x)=0F462(x)=F4(x)F463(x)F463(x)=F448(x)F464(x)=F4(x)F465(x)F465(x)=F466(x)F466(x)=2F18(x)+F424(x)+F467(x)F467(x)=F4(x)F468(x)F468(x)=F469(x)+F475(x)F469(x)=F21(x)+F470(x)F470(x)=2F18(x)+F43(x)+F471(x)F471(x)=F4(x)F472(x)F472(x)=F473(x)+F474(x)F473(x)=F21(x)F474(x)=F436(x)F475(x)=F466(x)+F476(x)F476(x)=2F18(x)+F130(x)+F477(x)+F493(x)F477(x)=F4(x)F478(x)F478(x)=F479(x)+F483(x)F479(x)=F470(x)+F480(x)F480(x)=F481(x)F481(x)=F4(x)F482(x)F482(x)=F474(x)F483(x)=F476(x)+F484(x)F484(x)=2F18(x)+F107(x)+F485(x)+F489(x)+F490(x)F485(x)=F4(x)F486(x)F486(x)=F487(x)+F488(x)F487(x)=F480(x)F488(x)=F484(x)F489(x)=0F490(x)=F4(x)F491(x)F491(x)=F492(x)F492(x)=F448(x)F493(x)=F4(x)F494(x)F494(x)=F492(x)+F495(x)F495(x)=F466(x)F496(x)=0F497(x)=F4(x)F498(x)F498(x)=F466(x)F499(x)=F4(x)F500(x)F500(x)=F358(x)F501(x)=0F502(x)=F4(x)F503(x)F503(x)=F428(x)+F504(x)F504(x)=F505(x)+F91(x)F505(x)=F18(x)+F506(x)+F532(x)+F560(x)F506(x)=F4(x)F507(x)F507(x)=F508(x)+F512(x)F508(x)=F17(x)+F509(x)F509(x)=F18(x)+F471(x)+F510(x)+F52(x)F510(x)=F4(x)F511(x)F511(x)=F17(x)+F436(x)F512(x)=F505(x)+F513(x)F513(x)=F18(x)+F493(x)+F499(x)+F514(x)+F530(x)F514(x)=F4(x)F515(x)F515(x)=F516(x)+F522(x)F516(x)=F509(x)+F517(x)F517(x)=F18(x)+F481(x)+F518(x)+F519(x)+F521(x)F518(x)=0F519(x)=F4(x)F520(x)F520(x)=F49(x)F521(x)=0F522(x)=F513(x)+F523(x)F523(x)=F18(x)+F489(x)+F490(x)+F496(x)+F524(x)+F528(x)F524(x)=F4(x)F525(x)F525(x)=F526(x)+F527(x)F526(x)=F517(x)F527(x)=F523(x)F528(x)=F4(x)F529(x)F529(x)=F429(x)F530(x)=F4(x)F531(x)F531(x)=F448(x)+F505(x)F532(x)=F4(x)F533(x)F533(x)=F466(x)+F534(x)F534(x)=F18(x)+F535(x)+F562(x)F535(x)=F4(x)F536(x)F536(x)=F537(x)+F539(x)F537(x)=F11(x)+F538(x)F538(x)=F18(x)+F24(x)+F35(x)F539(x)=F534(x)+F540(x)F540(x)=F18(x)+F541(x)+F557(x)+F560(x)F541(x)=F4(x)F542(x)F542(x)=F543(x)+F545(x)F543(x)=F538(x)+F544(x)F544(x)=F18(x)+F52(x)+F60(x)+F64(x)F545(x)=F540(x)+F546(x)F546(x)=F127(x)+F18(x)+F499(x)+F502(x)+F547(x)F547(x)=F4(x)F548(x)F548(x)=F549(x)+F551(x)F549(x)=F544(x)+F550(x)F550(x)=F18(x)+F521(x)+F75(x)+F76(x)+F78(x)F551(x)=F546(x)+F552(x)F552(x)=F18(x)+F426(x)+F496(x)+F553(x)+F87(x)+F88(x)F553(x)=F4(x)F554(x)F554(x)=F555(x)+F556(x)F555(x)=F550(x)F556(x)=F552(x)F557(x)=F4(x)F558(x)F558(x)=F504(x)+F559(x)F559(x)=F110(x)+F534(x)F560(x)=F4(x)F561(x)F561(x)=F132(x)+F383(x)F562(x)=F4(x)F420(x)F563(x)=F4(x)F564(x)F564(x)=F565(x)F565(x)=F358(x)+F429(x)F566(x)=F4(x)F567(x)F567(x)=F565(x)+F568(x)F568(x)=F383(x)+F505(x)F569(x)=F4(x)F570(x)F570(x)=F568(x)+F571(x)F571(x)=F2(x)+F534(x)