Av(1324, 2431)
The requested set is not in the database, but a symmetry of it is.
Generating Function
\(\displaystyle -\frac{\left(2 x^{2}+\sqrt{-4 x +1}-4 x +1\right) \left(2 x^{2}-4 x +1\right)}{2 \left(x^{3}-4 x^{2}+5 x -1\right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 22, 88, 363, 1508, 6255, 25842, 106327, 435965, 1782733, 7275351, 29648647, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-4 x^{2}+5 x -1\right) \left(x^{2}-3 x +1\right)^{2} F \left(x
\right)^{2}+\left(x^{2}-3 x +1\right) \left(2 x^{2}-4 x +1\right)^{2} F \! \left(x \right)+x \left(2 x^{2}-4 x +1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 22\)
\(\displaystyle a \! \left(5\right) = 88\)
\(\displaystyle a \! \left(6\right) = 363\)
\(\displaystyle a \! \left(7\right) = 1508\)
\(\displaystyle a \! \left(n +8\right) = -\frac{4 \left(2 n +5\right) a \! \left(n \right)}{n +8}+\frac{2 \left(37 n +110\right) a \! \left(n +1\right)}{n +8}-\frac{2 \left(139 n +485\right) a \! \left(n +2\right)}{n +8}+\frac{\left(541 n +2198\right) a \! \left(n +3\right)}{n +8}-\frac{\left(2716+575 n \right) a \! \left(n +4\right)}{n +8}+\frac{22 \left(15 n +82\right) a \! \left(n +5\right)}{n +8}-\frac{2 \left(51 n +320\right) a \! \left(n +6\right)}{n +8}+\frac{2 \left(8 n +57\right) a \! \left(n +7\right)}{n +8}, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 22\)
\(\displaystyle a \! \left(5\right) = 88\)
\(\displaystyle a \! \left(6\right) = 363\)
\(\displaystyle a \! \left(7\right) = 1508\)
\(\displaystyle a \! \left(n +8\right) = -\frac{4 \left(2 n +5\right) a \! \left(n \right)}{n +8}+\frac{2 \left(37 n +110\right) a \! \left(n +1\right)}{n +8}-\frac{2 \left(139 n +485\right) a \! \left(n +2\right)}{n +8}+\frac{\left(541 n +2198\right) a \! \left(n +3\right)}{n +8}-\frac{\left(2716+575 n \right) a \! \left(n +4\right)}{n +8}+\frac{22 \left(15 n +82\right) a \! \left(n +5\right)}{n +8}-\frac{2 \left(51 n +320\right) a \! \left(n +6\right)}{n +8}+\frac{2 \left(8 n +57\right) a \! \left(n +7\right)}{n +8}, \quad n \geq 8\)
Heatmap
To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).
This specification was found using the strategy pack "Point And Col Placements Req Corrob" and has 33 rules.
Found on April 26, 2021.Finding the specification took 23 seconds.
Copy 33 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{15}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{15}\! \left(x \right) F_{30}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Row And Col Placements Req Corrob" and has 59 rules.
Found on April 26, 2021.Finding the specification took 8 seconds.
Copy 59 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= x\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{21}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{16}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{6} \left(x \right)^{2} F_{16}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{16}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{16}\! \left(x \right) F_{22}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{16}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{31}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{31}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{2}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{10}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{6} \left(x \right)^{2} F_{31}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Req Corrob" and has 38 rules.
Found on April 26, 2021.Finding the specification took 28 seconds.
Copy 38 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{0}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{10}\! \left(x \right) F_{25}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\
\end{align*}\)