Av(123)
Generating Function
\(\displaystyle \frac{1-\sqrt{1-4 x}}{2 x}\)
Counting Sequence
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, ...
Implicit Equation for the Generating Function
\(\displaystyle x F \left(x
\right)^{2}-F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +2}, \quad n \geq 1\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +2}, \quad n \geq 1\)
Heatmap
To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 14 rules.
Found on January 20, 2022.Finding the specification took 1 seconds.
Copy 14 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\
F_{6}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= y x\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{4}\! \left(x \right) F_{7}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= -\frac{-y F_{6}\! \left(x , y\right)+F_{6}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)