Av(2143, 3412, 246315)
Generating Function
\(\displaystyle -\frac{\left(3 \sqrt{1-4 x}\, x^{2}+2 x^{3}-4 \sqrt{1-4 x}\, x -9 x^{2}+\sqrt{1-4 x}+6 x -1\right) \left(3 x -1\right)^{2} \left(x -1\right)}{2 x^{6} \left(2 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 22, 86, 339, 1327, 5150, 19854, 76207, 291779, 1115824, 4265768, 16311631, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{6} \left(2 x -1\right)^{2} F \left(x
\right)^{2}+\left(x -1\right) \left(x^{2}-4 x +1\right) \left(3 x -1\right)^{2} \left(2 x -1\right)^{2} F \! \left(x \right)+\left(x -1\right)^{2} \left(3 x -1\right)^{4} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{12 \left(3+2 n \right) a \! \left(n \right)}{10+n}+\frac{2 \left(94+25 n \right) a \! \left(n +1\right)}{10+n}-\frac{7 \left(29+5 n \right) a \! \left(n +2\right)}{10+n}+\frac{\left(79+10 n \right) a \! \left(n +3\right)}{10+n}, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{12 \left(3+2 n \right) a \! \left(n \right)}{10+n}+\frac{2 \left(94+25 n \right) a \! \left(n +1\right)}{10+n}-\frac{7 \left(29+5 n \right) a \! \left(n +2\right)}{10+n}+\frac{\left(79+10 n \right) a \! \left(n +3\right)}{10+n}, \quad n \geq 4\)
This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Expand Verified" and has 115 rules.
Found on January 23, 2022.Finding the specification took 47 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 115 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{114}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{5}\! \left(x \right) &= x\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{112}\! \left(x \right)+F_{7}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{52}\! \left(x , y\right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\
F_{15}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{32}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x \right)+F_{22}\! \left(x , y\right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{26}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= y x\\
F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\
F_{28}\! \left(x \right) &= 0\\
F_{29}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x , y\right)\\
F_{31}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{32}\! \left(x , y\right) &= F_{33}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{33}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x , y\right)+F_{35}\! \left(x , y\right)+F_{41}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{33}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{36}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{10}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{42}\! \left(x , y\right) &= F_{33}\! \left(x , y\right)+F_{43}\! \left(x , y\right)\\
F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{44}\! \left(x , y\right) &= -\frac{-y F_{45}\! \left(x , y\right)+F_{45}\! \left(x , 1\right)}{-1+y}\\
F_{45}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{46}\! \left(x , y\right)+F_{47}\! \left(x \right)\\
F_{46}\! \left(x , y\right) &= F_{44}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{48}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{5}\! \left(x \right)}\\
F_{49}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{50}\! \left(x \right) &= F_{5}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{44}\! \left(x , 1\right)\\
F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{54}\! \left(x , y\right) F_{66}\! \left(x \right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{56}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{55}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x , y\right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{5}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{62}\! \left(x , y\right) &= F_{28}\! \left(x \right)+F_{63}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{64}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\
F_{65}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{58}\! \left(x , y\right)\\
F_{66}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{67}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{5}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{71}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{5}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{5}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{5}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{76}\! \left(x \right)+F_{77}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{5}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{5}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= \frac{F_{80}\! \left(x \right)}{F_{5}\! \left(x \right)}\\
F_{80}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{81}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{5}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{5}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{5}\! \left(x \right)}\\
F_{84}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{85}\! \left(x \right)-F_{86}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{85}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{74}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{5}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{5}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x , 1\right)\\
F_{89}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{101}\! \left(x , y\right)+F_{90}\! \left(x , y\right)+F_{92}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\
F_{90}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{91}\! \left(x , y\right)\\
F_{91}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\
F_{92}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{93}\! \left(x , y\right)\\
F_{93}\! \left(x , y\right) &= -\frac{-y F_{89}\! \left(x , y\right)+F_{89}\! \left(x , 1\right)}{-1+y}\\
F_{95}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{101}\! \left(x , y\right)+F_{94}\! \left(x , y\right)+F_{99}\! \left(x , y\right)\\
F_{95}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{96}\! \left(x , y\right)+F_{97}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{96}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{89}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{98}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{95}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{100}\! \left(x , y\right) &= -\frac{-y F_{95}\! \left(x , y\right)+F_{95}\! \left(x , 1\right)}{-1+y}\\
F_{101}\! \left(x , y\right) &= F_{102}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)+F_{54}\! \left(x , y\right)\\
F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\
F_{104}\! \left(x , y\right) &= F_{105}\! \left(x \right)+F_{108}\! \left(x , y\right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{108}\! \left(x , y\right) &= 2 F_{28}\! \left(x \right)+F_{109}\! \left(x , y\right)+F_{111}\! \left(x , y\right)\\
F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{110}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\
F_{111}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{33}\! \left(x , 1\right)\\
F_{114}\! \left(x \right) &= F_{10}\! \left(x \right) F_{5}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Point Row Placements Tracked Fusion Req Corrob Expand Verified" and has 135 rules.
Found on January 22, 2022.Finding the specification took 78 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 135 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x , 1\right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{26}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)+F_{22}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= y x\\
F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)+F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)+F_{30}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{2}\! \left(x \right) F_{22}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{31}\! \left(x , y\right)\\
F_{31}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{32}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{33}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y\right)+F_{39}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)+F_{38}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{37}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\
F_{38}\! \left(x , y\right) &= -\frac{y \left(F_{17}\! \left(x , 1\right)-F_{17}\! \left(x , y\right)\right)}{-1+y}\\
F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\
F_{40}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= 0\\
F_{43}\! \left(x \right) &= F_{13}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{11} \left(x \right)^{2}\\
F_{49}\! \left(x \right) &= -F_{41}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= -F_{101}\! \left(x \right)-2 F_{42}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{11}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{13}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{61}\! \left(x \right) &= -F_{66}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= -F_{57}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= -F_{100}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{13}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{90}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= \frac{F_{71}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{13}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{11}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{30}\! \left(x , 1\right)\\
F_{82}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= \frac{F_{86}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{86}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{90}\! \left(x \right) &= -F_{93}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= \frac{F_{92}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{92}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{13}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{13}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{58}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{102}\! \left(x \right) &= -F_{105}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= \frac{F_{104}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{104}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{107}\! \left(x \right) &= \frac{F_{108}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{108}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{13}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)+F_{115}\! \left(x , y\right)\\
F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)+F_{114}\! \left(x , y\right)\\
F_{112}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)\\
F_{113}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{2}\! \left(x \right) F_{22}\! \left(x , y\right)\\
F_{114}\! \left(x , y\right) &= -\frac{y \left(F_{30}\! \left(x , 1\right)-F_{30}\! \left(x , y\right)\right)}{-1+y}\\
F_{115}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)\\
F_{116}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{83}\! \left(x \right)\\
F_{117}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{14}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{11}\! \left(x \right) F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= \frac{F_{127}\! \left(x \right)}{F_{13}\! \left(x \right)}\\
F_{127}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x , 1\right)\\
F_{130}\! \left(x , y\right) &= 2 F_{42}\! \left(x \right)+F_{131}\! \left(x , y\right)+F_{133}\! \left(x , y\right)\\
F_{131}\! \left(x , y\right) &= F_{132}\! \left(x , y\right)\\
F_{132}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{22}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{133}\! \left(x , y\right) &= F_{134}\! \left(x , y\right)\\
F_{134}\! \left(x , y\right) &= F_{102}\! \left(x \right) F_{13}\! \left(x \right) F_{22}\! \left(x , y\right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row And Col Placements Tracked Fusion Expand Verified" and has 119 rules.
Found on January 23, 2022.Finding the specification took 71 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 119 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{118}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= x\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{116}\! \left(x \right)+F_{8}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{6}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x , 1\right)\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x , y\right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x , 1\right)\\
F_{17}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{52}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{21}\! \left(x \right)+F_{24}\! \left(x , y\right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{21}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= y x\\
F_{28}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x , y\right)+F_{33}\! \left(x , y\right)\\
F_{30}\! \left(x \right) &= 0\\
F_{31}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{32}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{22}\! \left(x \right)+F_{29}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{35}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x , y\right)+F_{37}\! \left(x , y\right)+F_{44}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{35}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{38}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= -F_{41}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{6}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{44}\! \left(x , y\right) &= F_{45}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{45}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)+F_{46}\! \left(x , y\right)\\
F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{47}\! \left(x , y\right) &= -\frac{-y F_{48}\! \left(x , y\right)+F_{48}\! \left(x , 1\right)}{-1+y}\\
F_{48}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{49}\! \left(x , y\right)+F_{50}\! \left(x \right)\\
F_{49}\! \left(x , y\right) &= F_{47}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{51}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{6}\! \left(x \right)}\\
F_{52}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{47}\! \left(x , 1\right)\\
F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{57}\! \left(x , y\right) F_{69}\! \left(x \right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{59}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{58}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= F_{62}\! \left(x \right)+F_{65}\! \left(x , y\right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{6}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{65}\! \left(x , y\right) &= F_{30}\! \left(x \right)+F_{66}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\
F_{66}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{67}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{61}\! \left(x , y\right)\\
F_{69}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{70}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{6}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{6}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{6}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{6}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{79}\! \left(x \right)+F_{80}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{6}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{6}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{82}\! \left(x \right) &= \frac{F_{83}\! \left(x \right)}{F_{6}\! \left(x \right)}\\
F_{83}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{84}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{6}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{6}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= \frac{F_{88}\! \left(x \right)}{F_{6}\! \left(x \right)}\\
F_{88}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{89}\! \left(x \right)-F_{90}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{89}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{77}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{6}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{6}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x , 1\right)\\
F_{93}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{105}\! \left(x , y\right)+F_{94}\! \left(x , y\right)+F_{96}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{94}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{95}\! \left(x , y\right)\\
F_{95}\! \left(x , y\right) &= -\frac{-y F_{10}\! \left(x , y\right)+F_{10}\! \left(x , 1\right)}{-1+y}\\
F_{96}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{97}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= -\frac{-y F_{93}\! \left(x , y\right)+F_{93}\! \left(x , 1\right)}{-1+y}\\
F_{99}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{103}\! \left(x , y\right)+F_{105}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{100}\! \left(x , y\right)+F_{101}\! \left(x , y\right)+F_{102}\! \left(x , y\right)\\
F_{100}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{93}\! \left(x , y\right)\\
F_{101}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{102}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{99}\! \left(x , y\right)\\
F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{104}\! \left(x , y\right) &= -\frac{-y F_{99}\! \left(x , y\right)+F_{99}\! \left(x , 1\right)}{-1+y}\\
F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{57}\! \left(x , y\right)\\
F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\
F_{108}\! \left(x , y\right) &= F_{109}\! \left(x \right)+F_{112}\! \left(x , y\right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{112}\! \left(x , y\right) &= 2 F_{30}\! \left(x \right)+F_{113}\! \left(x , y\right)+F_{115}\! \left(x , y\right)\\
F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{114}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\
F_{115}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{35}\! \left(x , 1\right)\\
F_{118}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Req Corrob Expand Verified" and has 126 rules.
Found on January 22, 2022.Finding the specification took 57 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 126 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{125}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{117}\! \left(x \right)+F_{119}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\
F_{10}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{116}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{30}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= y x\\
F_{21}\! \left(x , y\right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x , y\right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\
F_{26}\! \left(x \right) &= 0\\
F_{27}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)+F_{25}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{21}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)+F_{26}\! \left(x \right)+F_{31}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\
F_{31}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{32}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x , y\right)+F_{35}\! \left(x , y\right)+F_{37}\! \left(x , y\right)+F_{40}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{34}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\
F_{35}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{36}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= -\frac{-y F_{32}\! \left(x , y\right)+F_{32}\! \left(x , 1\right)}{-1+y}\\
F_{11}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x , y\right)+F_{38}\! \left(x , y\right)+F_{40}\! \left(x , y\right)\\
F_{38}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{39}\! \left(x , y\right)\\
F_{39}\! \left(x , y\right) &= -\frac{-y F_{11}\! \left(x , y\right)+F_{11}\! \left(x , 1\right)}{-1+y}\\
F_{40}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{41}\! \left(x , y\right)\\
F_{41}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{42}\! \left(x , y\right)\\
F_{42}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{43}\! \left(x , y\right)\\
F_{43}\! \left(x , y\right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x , y\right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{14}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{47}\! \left(x , y\right) &= 2 F_{26}\! \left(x \right)+F_{48}\! \left(x , y\right)+F_{50}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{49}\! \left(x , y\right)\\
F_{49}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)+F_{47}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{43}\! \left(x , y\right)\\
F_{51}\! \left(x , y\right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{14}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= -F_{107}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{106}\! \left(x \right)+F_{55}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{14}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x , 1\right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)+F_{6}\! \left(x \right)\\
F_{58}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{60}\! \left(x , y\right)+F_{62}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{59}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{63}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{63}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{65}\! \left(x , y\right)+F_{66}\! \left(x , y\right)\\
F_{65}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{59}\! \left(x , y\right)\\
F_{66}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{67}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{64}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{69}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{70}\! \left(x , y\right)+F_{73}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{71}\! \left(x , y\right)\\
F_{71}\! \left(x , y\right) &= F_{72}\! \left(x , y\right)\\
F_{72}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{70}\! \left(x , y\right)\\
F_{73}\! \left(x , y\right) &= F_{74}\! \left(x \right)+F_{77}\! \left(x , y\right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{14}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{77}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{78}\! \left(x , y\right)+F_{80}\! \left(x , y\right)\\
F_{78}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{79}\! \left(x , y\right)\\
F_{79}\! \left(x , y\right) &= F_{71}\! \left(x , y\right)+F_{77}\! \left(x , y\right)\\
F_{80}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{73}\! \left(x , y\right)\\
F_{81}\! \left(x \right) &= F_{14}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x , 1\right)\\
F_{83}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{84}\! \left(x , y\right)+F_{86}\! \left(x , y\right)+F_{88}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\
F_{84}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{85}\! \left(x , y\right)\\
F_{85}\! \left(x , y\right) &= -\frac{-y F_{57}\! \left(x , y\right)+F_{57}\! \left(x , 1\right)}{-1+y}\\
F_{86}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{87}\! \left(x , y\right)\\
F_{87}\! \left(x , y\right) &= -\frac{-y F_{83}\! \left(x , y\right)+F_{83}\! \left(x , 1\right)}{-1+y}\\
F_{89}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{88}\! \left(x , y\right)+F_{93}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\
F_{89}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{90}\! \left(x , y\right)+F_{91}\! \left(x , y\right)+F_{92}\! \left(x , y\right)\\
F_{90}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{83}\! \left(x , y\right)\\
F_{91}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{57}\! \left(x , y\right)\\
F_{92}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{89}\! \left(x , y\right)\\
F_{93}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{94}\! \left(x , y\right)\\
F_{94}\! \left(x , y\right) &= -\frac{-y F_{89}\! \left(x , y\right)+F_{89}\! \left(x , 1\right)}{-1+y}\\
F_{95}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{96}\! \left(x , y\right)\\
F_{96}\! \left(x , y\right) &= F_{69}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{73}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\
F_{98}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{102}\! \left(x , y\right) &= 2 F_{26}\! \left(x \right)+F_{103}\! \left(x , y\right)+F_{105}\! \left(x , y\right)\\
F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{14}\! \left(x \right)\\
F_{104}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{77}\! \left(x , y\right)\\
F_{105}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{98}\! \left(x , y\right)\\
F_{106}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{110}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{108}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{14}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{112}\! \left(x \right)+F_{113}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{14}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{14}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{111}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{115}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\
F_{116}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{32}\! \left(x , 1\right)\\
F_{119}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{120}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{122}\! \left(x \right)+F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{118}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{121}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{14}\! \left(x \right) F_{54}\! \left(x \right)\\
\end{align*}\)