Av(21354, 21453, 21543, 31254, 31452, 31542, 32154, 41253, 41352, 42153)
Counting Sequence
1, 1, 2, 6, 24, 110, 543, 2818, 15189, 84367, 480216, 2789318, 16480115, 98794581, 599722994, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 55 rules.
Finding the specification took 2559 seconds.
Copy 55 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{30}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x , 1\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{30}\! \left(x \right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{47}\! \left(x , y\right)+F_{48}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)+F_{20}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= y x\\
F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{30}\! \left(x \right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)+F_{4}\! \left(x \right)\\
F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{46}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= x\\
F_{31}\! \left(x , y\right) &= F_{32}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{30}\! \left(x \right) F_{33}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{22}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{36}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{36}\! \left(x , y\right) F_{46}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)\\
F_{39}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)+F_{7}\! \left(x \right)\\
F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)+F_{43}\! \left(x , y\right)\\
F_{40}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)+F_{41}\! \left(x , y\right)\\
F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)\\
F_{42}\! \left(x , y\right) &= -\frac{-F_{11}\! \left(x , y\right) y +F_{11}\! \left(x , 1\right)}{-1+y}\\
F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)\\
F_{44}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right) F_{45}\! \left(x , y\right)\\
F_{45}\! \left(x , y\right) &= -\frac{-y F_{33}\! \left(x , y\right)+F_{33}\! \left(x , 1\right)}{-1+y}\\
F_{46}\! \left(x , y\right) &= y x\\
F_{47}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{46}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{30}\! \left(x \right)\\
F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{30}\! \left(x \right) F_{33}\! \left(x , y\right)\\
F_{51}\! \left(x , y\right) &= F_{34}\! \left(x , y\right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{33}\! \left(x , 1\right)\\
\end{align*}\)