Av(14352, 15342, 24351, 25341)
Generating Function
\(\displaystyle \frac{-x \sqrt{-8 x +1}-x +2}{4 x^{2}-4 x +2}\)
Counting Sequence
1, 1, 2, 6, 24, 116, 632, 3720, 23072, 148528, 983072, 6647776, 45727616, 318947136, 2250473344, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{2}-2 x +1\right) F \left(x
\right)^{2}+\left(x -2\right) F \! \left(x \right)+x +1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 \left(2 n + 1\right) a{\left(n \right)}}{n + 2} - \frac{6 \left(3 n + 2\right) a{\left(n + 1 \right)}}{n + 2} + \frac{2 \left(5 n + 4\right) a{\left(n + 2 \right)}}{n + 2}, \quad n \geq 3\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 \left(2 n + 1\right) a{\left(n \right)}}{n + 2} - \frac{6 \left(3 n + 2\right) a{\left(n + 1 \right)}}{n + 2} + \frac{2 \left(5 n + 4\right) a{\left(n + 2 \right)}}{n + 2}, \quad n \geq 3\)
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 19 rules.
Finding the specification took 56 seconds.
Copy 19 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y\right) &= F_{4}\! \left(x \right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= 0\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x \right)\\
F_{11}\! \left(x , y\right) &= -\frac{y \left(F_{8}\! \left(x , 1\right)-F_{8}\! \left(x , y\right)\right)}{-1+y}\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= y x\\
F_{17}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)\\
F_{18}\! \left(x \right) &= F_{5}\! \left(x \right)\\
\end{align*}\)