Av(1432, 2143, 2341, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{5}-5 x^{4}+3 x^{3}-6 x^{2}+4 x -1}{\left(x^{3}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 59, 155, 379, 888, 2028, 4562, 10173, 22573, 49949, 110358, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{5}-5 x^{4}+3 x^{3}-6 x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(n \right) = -2 n^{2}-2 a \! \left(n +2\right)+a \! \left(n +3\right)-4 n -1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{29 \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(\left(-\frac{1888 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(n^{2}+n +\frac{1}{2}\right) \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}}{29}+\frac{944 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(-4 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{2}\right)^{n}}{29}+\frac{2 \left(\sqrt{59}\, 16^{n} 3^{\frac{1}{2}+n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}+\frac{295 \left(3^{n +\frac{2}{3}} 2^{4 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{6 \,3^{n +\frac{1}{3}} 2^{4 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{5}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}}{58}\right) \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-9 \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \sqrt{3}-48\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}-54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{3}+\left(-\frac{59 \sqrt{3}\, \left(\frac{29 \sqrt{59}}{177}+\mathrm{I}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{29}-\frac{295 \sqrt{3}\, \left(-\frac{7 \sqrt{59}}{295}+\mathrm{I}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{348}+3^{\frac{1}{3}} \left(\mathrm{I} \sqrt{59}+\frac{59}{29}\right) 2^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{944}{29}+\frac{7 \,2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}-\frac{295}{21}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{58}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}-\left(\frac{7 \sqrt{59}\, 16^{n} 3^{\frac{1}{2}+n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}} \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-9 \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \sqrt{3}-48\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}+54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{174}+\left(-\frac{59 \sqrt{3}\, \left(\mathrm{I}-\frac{29 \sqrt{59}}{177}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{29}-\frac{295 \sqrt{3}\, \left(\mathrm{I}+\frac{7 \sqrt{59}}{295}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{348}+\left(\mathrm{I} \sqrt{59}-\frac{59}{29}\right) 3^{\frac{1}{3}} 2^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{944}{29}+\frac{7 \,2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}+\frac{295}{21}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{58}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{\left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}\right)}{1888}\)

This specification was found using the strategy pack "Point Placements" and has 77 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 77 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{35}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{35}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{73}\! \left(x \right)\\ \end{align*}\)