Av(14325, 14352, 14532, 41325, 41352, 41532, 43125, 43152, 43512, 45132, 45312)
Counting Sequence
1, 1, 2, 6, 24, 109, 522, 2574, 12964, 66426, 345300, 1816976, 9660732, 51825093, 280168474, ...
This specification was found using the strategy pack "Row And Col Placements Tracked Fusion" and has 19 rules.
Found on January 23, 2022.Finding the specification took 66 seconds.
Copy 19 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{18}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\
F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\
F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y , 1\right)\\
F_{6}\! \left(x , y , z\right) &= F_{12}\! \left(x , y\right) F_{7}\! \left(x , y , z\right)\\
F_{7}\! \left(x , y , z\right) &= \frac{y F_{8}\! \left(x , y , 1\right)-z F_{8}\! \left(x , y , \frac{z}{y}\right)}{-z +y}\\
F_{8}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y , z\right)+F_{9}\! \left(x , y , z\right)\\
F_{9}\! \left(x , y , z\right) &= F_{6}\! \left(x , y , y z \right)\\
F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right)\\
F_{11}\! \left(x , y , z\right) &= F_{12}\! \left(x , z\right) F_{13}\! \left(x , z\right) F_{8}\! \left(x , y , z\right)\\
F_{12}\! \left(x , y\right) &= y x\\
F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right)\\
F_{17}\! \left(x , y\right) &= \frac{y F_{4}\! \left(x , y\right)-F_{4}\! \left(x , 1\right)}{-1+y}\\
F_{18}\! \left(x \right) &= x\\
\end{align*}\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 20 rules.
Found on January 22, 2022.Finding the specification took 6 seconds.
Copy 20 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{19}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\
F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\
F_{5}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\
F_{6}\! \left(x , y\right) &= \frac{y F_{7}\! \left(x , y , 1\right)-F_{7}\! \left(x , y , \frac{1}{y}\right)}{-1+y}\\
F_{7}\! \left(x , y , z\right) &= F_{8}\! \left(x , y , y z \right)\\
F_{8}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{9}\! \left(x , y , z\right)\\
F_{9}\! \left(x , y , z\right) &= F_{10}\! \left(x , y , z\right) F_{11}\! \left(x , y\right)\\
F_{10}\! \left(x , y , z\right) &= \frac{y F_{7}\! \left(x , y , 1\right)-z F_{7}\! \left(x , y , \frac{z}{y}\right)}{-z +y}\\
F_{11}\! \left(x , y\right) &= y x\\
F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right)\\
F_{13}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{14}\! \left(x , z\right) F_{8}\! \left(x , y , z\right)\\
F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{14}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{19}\! \left(x \right)\\
F_{18}\! \left(x , y\right) &= -\frac{-y F_{4}\! \left(x , y\right)+F_{4}\! \left(x , 1\right)}{-1+y}\\
F_{19}\! \left(x \right) &= x\\
\end{align*}\)