Av(13542, 14523, 14532, 15324, 15423, 15432, 24513, 25314, 25413, 35214)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 533, 2633, 13156, 66480, 339904, 1757514, 9179341, 48364044, 256753628, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{7} \left(x^{2}+x -1\right) \left(x -1\right)^{2} F \left(x \right)^{6}-x^{4} \left(2 x^{7}-x^{6}-2 x^{5}-3 x^{4}+12 x^{3}-8 x^{2}+4 x -1\right) F \left(x \right)^{5}+x^{3} \left(x^{8}+2 x^{7}-2 x^{6}-6 x^{5}+11 x^{4}+10 x^{3}-16 x^{2}+12 x -3\right) F \left(x \right)^{4}-x^{2} \left(2 x^{8}-2 x^{7}+2 x^{6}-7 x^{5}+19 x^{4}+x^{3}-18 x^{2}+16 x -4\right) F \left(x \right)^{3}+x \left(x^{8}-2 x^{7}+x^{6}-2 x^{5}+12 x^{4}-3 x^{3}-15 x^{2}+15 x -4\right) F \left(x \right)^{2}+\left(3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)-\left(x^{2}+x -1\right) \left(x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 110\)
\(\displaystyle a(6) = 533\)
\(\displaystyle a(7) = 2633\)
\(\displaystyle a(8) = 13156\)
\(\displaystyle a(9) = 66480\)
\(\displaystyle a(10) = 339904\)
\(\displaystyle a(11) = 1757514\)
\(\displaystyle a(12) = 9179341\)
\(\displaystyle a(13) = 48364044\)
\(\displaystyle a(14) = 256753628\)
\(\displaystyle a(15) = 1372040320\)
\(\displaystyle a(16) = 7374414515\)
\(\displaystyle a(17) = 39839625287\)
\(\displaystyle a(18) = 216218841272\)
\(\displaystyle a(19) = 1178316416377\)
\(\displaystyle a(20) = 6445379164373\)
\(\displaystyle a(21) = 35375656826145\)
\(\displaystyle a(22) = 194760439751590\)
\(\displaystyle a(23) = 1075286198551029\)
\(\displaystyle a(24) = 5952166058838587\)
\(\displaystyle a(25) = 33026744399984541\)
\(\displaystyle a(26) = 183661538367128105\)
\(\displaystyle a(27) = 1023440975175263537\)
\(\displaystyle a(28) = 5713959880110534141\)
\(\displaystyle a(29) = 31958423025391564394\)
\(\displaystyle a(30) = 179042735775460035065\)
\(\displaystyle a(31) = 1004628530924164593986\)
\(\displaystyle a(32) = 5645340998050868702170\)
\(\displaystyle a(33) = 31766755335721172932847\)
\(\displaystyle a(34) = 178985956489019304052053\)
\(\displaystyle a(35) = 1009710335971357046566740\)
\(\displaystyle a(36) = 5702657818857709249989177\)
\(\displaystyle a(37) = 32242872699841441493197318\)
\(\displaystyle a(38) = 182490964324380636664542286\)
\(\displaystyle a(39) = 1033897326641385527872722868\)
\(\displaystyle a(40) = 5863011415402299705111328970\)
\(\displaystyle a(41) = 33277580625122844238238559009\)
\(\displaystyle a(42) = 189039344557506057541322903721\)
\(\displaystyle a(43) = 1074744289667723989893730791164\)
\(\displaystyle a(44) = 6114975869147399120600454735191\)
\(\displaystyle a(45) = 34818192430375569397066102618078\)
\(\displaystyle a(46) = 198392721056587827687971225271137\)
\(\displaystyle a(47) = 1131202419555893251325849730619049\)
\(\displaystyle a(48) = 6454131876128386955284307405270693\)
\(\displaystyle a(49) = 36847399142281026958272448055159532\)
\(\displaystyle a(50) = 210492482608910173289286380959593608\)
\(\displaystyle a(51) = 1203142224240572985091985592399276467\)
\(\displaystyle a(52) = 6880792008871729430829228338773155965\)
\(\displaystyle a(53) = 39372407071159641683256974339520047345\)
\(\displaystyle a(54) = 225407864398515069660348214856765320647\)
\(\displaystyle a(55) = 1291105317937305638782674156527065936130\)
\(\displaystyle a(56) = 7398814809368012217798167067341796756559\)
\(\displaystyle a(57) = 42419280447238278493822531525505761859905\)
\(\displaystyle a(58) = 243309032792210027509970039229622523355774\)
\(\displaystyle a(59) = 1396176903591238950143218114896315800798523\)
\(\displaystyle a(60) = 8015004280030430837851137616981837164556768\)
\(\displaystyle a(61) = 46030137465684224918208585625521046237047565\)
\(\displaystyle a(62) = 264454148099197425127479671274285808437130059\)
\(\displaystyle a(63) = 1519927079526567336242607469628996956457746349\)
\(\displaystyle a(64) = 8738850031007024532883881495449390710898055458\)
\(\displaystyle a(65) = 50262041617193263999733878983567954331435315393\)
\(\displaystyle a(66) = 289184911362025549108464895765143520541638239043\)
\(\displaystyle a(67) = 1664394851578195450528869284541063729349480617727\)
\(\displaystyle a(68) = 9582483689338824977316442066474812251699112329010\)
\(\displaystyle a(69) = 55186995026047446482298536416001919100577854010825\)
\(\displaystyle a(70) = 317927762956642124802504040269958201936980788774904\)
\(\displaystyle a(71) = 1832101324254539701023334713637713789999669953832399\)
\(\displaystyle a(72) = 10560786979802625399960226587674463839715870181670775\)
\(\displaystyle a(73) = 60892725643966523107473934181517981851787937319935865\)
\(\displaystyle a(74) = 351199265416321870019229891594205244979452262484110614\)
\(\displaystyle a(75) = 2026085101131456879242553804831783937885586913960655651\)
\(\displaystyle a(76) = 11691618514003680046463250988983366631158526962922731001\)
\(\displaystyle a(77) = 67484113316084793530850714690536073549411428084082214125\)
\(\displaystyle a(78) = 389614947747831841612753114659221292174085064889623453385\)
\(\displaystyle a(79) = 2249956562349816120773468422109215876034220278489252694027\)
\(\displaystyle a(80) = 12996144168625173549313770547081515603551111312140618586148\)
\(\displaystyle a(81) = 75085187676019876847490864218929057302531483217003859766871\)
\(\displaystyle a(82) = 433901324011663058096781146923601046437093729866006672749912\)
\(\displaystyle a(83) = 2507969854888870997898052791996855599594656487578084776836469\)
\(\displaystyle a(84) = 14499266782864239718157585532535942653476045845699494013644524\)
\(\displaystyle a(85) = 83841685433935096418532510553165600447178494415523639436278165\)
\(\displaystyle a(86) = 484911075448985590300921599522039872761514081110593237445675315\)
\(\displaystyle a(87) = 2805112840318755881416282626774013572734785592607471203786899654\)
\(\displaystyle a(88) = 16230158132791207915824709129691641481162985115728913225421350745\)
\(\displaystyle a(89) = 93924191952371966703862292738835440813838056884876847076636529675\)
\(\displaystyle a(90) = 543641579626183574048629428782297545224877206051266266870140946234\)
\(\displaystyle a(91) = 3147216262251830905761426976929192892896616860370441276769750622830\)
\(\displaystyle a(92) = 18222901511595074177998418465294427805080343297285186915249241159908\)
\(\displaystyle a(93) = 105531920569832616169340379674710423066713140030817895266264667268595\)
\(\displaystyle a(94) = 611257123112394656728809921213448926374009757960371260343472949480029\)
\(\displaystyle a(95) = 3541084221685955153021703301451940149571928517019843685230713042341706\)
\(\displaystyle a(96) = 20517257734193860109706892495048959012459955410590313425595641305477759\)
\(\displaystyle a(97) = 118897207702135314099073825951792961785033558733891549895910327917100570\)
\(\displaystyle a(98) = 689115269551953903713149126648253471231921621081476240633479145784375828\)
\(\displaystyle a(99) = 3994648798608978943966583748340959559327003894968963565494289281619242282\)
\(\displaystyle a(100) = 23159571566653142259825116384402268548462251004396385442864619137619104377\)
\(\displaystyle a(101) = 134290825189210579939341578192919220713757792685761003094522258260197785918\)
\(\displaystyle a(102) = 778797986994169315457582888496814750983780986231455079671147141962899260967\)
\(\displaystyle a(103) = 4517152404987737041358673947947544696008597423497496095625523592996655558309\)
\(\displaystyle a(104) = 26203839822519432818156554662327769210170341124049908582740161721538529851699\)
\(\displaystyle a(105) = 152028235536093171906632326141772575283784515506155523335001184547910093170338\)
\(\displaystyle a(106) = 882148276645537937841192493559520278452530608251422399537684296508581537483019\)
\(\displaystyle a(107) = 5119362247580620297958957983240130881504642739263706685034204622894726304393963\)
\(\displaystyle a(108) = 29712966930437105569485361920430741325541843363141766159993171519255370661544878\)
\(\displaystyle a(109) = 172476941993697820371542860291279880664128980430939542808350623654501326506223324\)
\(\displaystyle a(110) = 1001313197088844172364510205374632807199584628702859468453297470541184911799735488\)
\(\displaystyle a(111) = 5813822157753755958592955831430461045944388870929165519380171510399566769052723996\)
\(\displaystyle a(112) = 33760238869509814499464816585865274878307834889389247334561851155864236616514087766\)
\(\displaystyle a(113) = 196065114972529568978720041263746309851007054519291290488308601914818497251535498774\)
\(\displaystyle a(114) = 1138794349671381265463578212053931773306980665479749040256121867073318137979355426955\)
\(\displaystyle a(115) = 6615148043771735630384773109183709510304646970420217244581334278544177827965742459148\)
\(\displaystyle a(116) = 38431052179795670855928485556284744221775266579681686661718880195821258995458888571069\)
\(\displaystyle a(117) = 223291710134057782197312670247289299922689697896426414244716776668529542750784425687561\)
\(\displaystyle a(118) = 1297507088103916345799448869822677983369232981723437653783458419246827091550761873191531\)
\(\displaystyle a(119) = 7540374372131027599932341265230775656040903502867751359585889923972922047057002532594301\)
\(\displaystyle a(120) = 43824941473332764135948206151489698395676210126537967588876083881260296626021831421226157\)
\(\displaystyle a(121) = 254738332730146063336749804452205979067279560111027577383256796974590821634847513432668743\)
\(\displaystyle a(122) = 1480849944439041328164452874982585924286863980139840409906874927406427523546713578443903530\)
\(\displaystyle a(123) = 8609360423368724131137917483508882847639513975071398110428440945291394282202910099387215641\)
\(\displaystyle a(124) = 50057956696954118396351624035666471426131986521684168061715536573173289427307130826091523488\)
\(\displaystyle a(125) = 291083148516766071495944692699541989692673351410674345870851540877147133652725351776972672412\)
\(\displaystyle a(126) = 1692786031184580038474537789408338319878254887939438205289798634589231811440029978967965585032\)
\(\displaystyle a(127) = 9845266632999191267273656811408102468159699274348216021128629361007224745256474239474190919854\)
\(\displaystyle a(128) = 57265450555431463257848077791751609318959291118621928933907805181509821762317243125440778253640\)
\(\displaystyle a(129) = 333117195151464443308817275706497553261056764583361382731701865562542417668630887934047447982386\)
\(\displaystyle a(130) = 1937938492892164540550041509866495114986968029238301146989834970922749739221095700716245163491388\)
\(\displaystyle a(131) = 11275113163652967539359556985197134567117583379439375905379036623850195368678568681378735377529291\)
\(\displaystyle a(132) = 65605347247507217084416280530272660884778083328606309705907293929381591879844639455178083256786398\)
\(\displaystyle a(133) = 381763510882772016845784839722449583043617588477713367304231880652187773753746678480506838754287184\)
\(\displaystyle a(134) = 2221702448822398816043792149225852978364022320157634016713946739698933782729155940253140052821525854\)
\(\displaystyle a(135) = 12930435010773809536998430367408007653880359720555157927100814172312388796318514451845481629351713245\)
\(\displaystyle a(136) = 75261976293970175870931093467000232911664634620238640187633719740078608692586876458941208517096578553\)
\(\displaystyle a(137) = 438099571282452665123354616154229856870189208888625650017776987445946188650021943828115146541986069146\)
\(\displaystyle a(138) = 2550376301329867101194213213405331731738557472719611416102884901476151462110325540377586807242081963613\)
\(\displaystyle a(139) = 14848050480452294888428240522148654068087235900818220588207963718840016972695122774432276576543410432440\)
\(\displaystyle a(140) = 86450570091691941362186130067518858557390644085974525654374737833540455795933152058586819959577099281493\)
\(\displaystyle a(141) = 503383611780246018427329051232964325717365272255221792482111646717165051274567963366569607747337575635433\)
\(\displaystyle a(142) = 2931315794267704509898085280393038710842562857334646226277349082638426660945651595208994260556987604808294\)
\(\displaystyle a(143) = 17070962863411554966348668046935128781894037248457027675053904395995446900858802096981866706633985124313733\)
\(\displaystyle a(144) = 99422541316054101152073856394486761591148677425608783681715134442767693294754135380330662535325051914405632\)
\(\displaystyle a(145) = 579085516210590480598526684487505597135552887590678600576442964100627459060255691071482553048449793296204285\)
\(\displaystyle a(146) = 3373114805892167948496960969351499505789560649245729562011855545947203766074918290301181774254809476529456321\)
\(\displaystyle a(147) = 19649418645286247597626863830302520278906286390666494427420686486945323742919831016931029804487982759674576516\)
\(\displaystyle a(148) = 114471676893733713923218823832252861393049316744926967257048960147529141494021056050508578967833822981938792038\)
\(\displaystyle a(149) = 666923072267856277493570319510222153939147782366888076322151613988276060807589385678051493312389170582520070483\)
\(\displaystyle a(150) = 3885817567835367374664212689014564616766372866225842294247960042972176040019661548959124060948518697401517264386\)
\(\displaystyle a(151) = 22642149736144553022566365159337955516970290912445296637823793641756008845647917983775865350401471332055286739598\)
\(\displaystyle a(152) = 131941409540896003602051958392977086357175968769757676064383511243260956678927709191614199445093277117060197412429\)
\(\displaystyle a(153) = 768904536987371790185045655829108831996923075979049978400899713276169499884542104880958740330292106154088806364129\)
\(\displaystyle a(154) = 4481167835028340972460682498644301692199105268353023690817864662378176661822603553600909961378478167874669023045393\)
\(\displaystyle a(155) = 26117832084921851573828436233434531710383354960963252513203903711263630715173193015238818220181896739258969374349332\)
\(\displaystyle a(156) = 152233356472100530257200781475906337187787205445058284420559212034262557793093033390980074496968583678672456768597481\)
\(\displaystyle a(157) = 887378623013734989802404416752651305099216311954285374405264548687327691471501372247583705084959996686910043671885568\)
\(\displaystyle a(158) = 5172901513796709614377537996578575671244836548146031842246111950064907612494794029551279764143991199850540503741500008\)
\(\displaystyle a(159) = 30156798800708485227577877135603474094568382081185701670941626562995653643803160576289659581583495649911585037321015573\)
\(\displaystyle a(160) = 175817348616064612234484577208812612809433345433197093793395260507647025538281674370261573041200902377045303925729994747\)
\(\displaystyle a(161) = 1025093214077875995269406289855089433919420236673362053059698190282282373642622877298339990267424776138214313516307248874\)
\(\displaystyle a(162) = 5977090413637959483801756576965949350464750011029275663244354462705136085268741617203908201758637567745287662599426352430\)
\(\displaystyle a(163) = 34853052690478949113998319804586437312286681876545267448093933101140098023554610833847047768327924544933606293033405227679\)
\(\displaystyle a(164) = 203243213451024302624295566410061334928172552546516931670317584218516159788827745221796014445083034328279769936279114540582\)
\(\displaystyle a(165) = 1185264351203925206451703552847374360759587620690937104534872760586351188008986617998307015348623680564328669958535448234117\)
\(\displaystyle a(166) = 6912546154220766998451415157087872959521197312705631893821738715354523349234995242555603060372221587583459483255721359641988\)
\(\displaystyle a(167) = 40316631128286374729201356709707322358920602447761521529544441928381876942648520398717252118000333455376083051109571481020636\)
\(\displaystyle a(168) = 235154621487729041854393095160188196672764378907582889806945895901333785492868773723752646885536698757277240957434954329380743\)
\(\displaystyle a(169) = 1371657306113896781757165656614834193106350805997603182076077961790818268005487322079476480092820210598823226655530607073268332\)
\(\displaystyle a(170) = 8001294870490948183185905578058870681239395761377620012244793646033487338775949690383938947906786187507906964310172756396592384\)
\(\displaystyle a(171) = 46676385614437405315987468729099597817420548247491842298746612520762281829735867109161458514692424923605107659654430729521709883\)
\(\displaystyle a(172) = 272305361773522974010225662424796167312440354370182199561117925291429135859843940669288010603515251930289340978617204986715757706\)
\(\displaystyle a(173) = 1588681882664325825289020292446109650302249180196045826132155792752381390009644592974205337170035071584714226706621315143634387946\)
\(\displaystyle a(174) = 9269135259820768690260889831854122635285003238933806529969527086044846092774676423663914032354422303119147267694413781114786017437\)
\(\displaystyle a(175) = 54083249525010210046224103276080501472033083740782353763696480467134018441056510156308778451523398806834978525714628750571008225281\)
\(\displaystyle a(176) = 315578477092743425111464945494502734449830638264783176500045065669974604087374368088766829313317319471799399345454653308514654189982\)
\(\displaystyle a(177) = 1841504469883266966877103112761938033449060370398781963972744713356755861593208018083578327442326249000936418163691153867571866302250\)
\(\displaystyle a(178) = 10746294758370474784517697841952479683109509247628456302232316122621123049519768696196500360802892937452790726379493241028770448112645\)
\(\displaystyle a(179) = 62714080699953234737452980672590734839534209872974231783236214988084103852167532432401941285009354467375794515607563423144782088575497\)
\(\displaystyle a(180) = 366008766600857821498552791750852589853930035490825591347075249049088893745926335516582305760634703526391809635156271790790338803550797\)
\(\displaystyle a(181) = 2136179821856779109595053776581723486895410886911912635652921334939174757075582987127693712950638728231730616967829817806982513708078745\)
\(\displaystyle a(182) = 12468201281270902504029755288286349654326369996205878970319919725858447576421841130982056689570150802278760141578014097528709149687313433\)
\(\displaystyle a(183) = 72776181035619929438785849074194881887529913566785908040377058719284242780658974941719351607306943040157106649144490498685241465373355216\)
\(\displaystyle a(184) = 424809254585117315435481207936953821581431273467953423877287580118569974581636542641183683382912274791041924513394598062325627254635349376\)
\(\displaystyle a(185) = 2479806072847316210696878384392744407489816258444915941349936049271539182398305616542208542579944096340785531613293692136853307760460710463\)
\(\displaystyle a(186) = 14476391086218512585606884889506175250318881967986392546916849480585179015620909777250337234275737205354072317383792502732052696257333978461\)
\(\displaystyle a(187) = 84512613564985182267394505927082370764825392634988413975006559049118336027302429093680593383347077437569032738516726322501304298035958004171\)
\(\displaystyle a(188) = 493402331414721388737346937886237476174510102794709178182504494011456788224605129683251583557214234676243986962167793088706074309054741687344\)
\(\displaystyle a(189) = 2880707125399625014095878878124738290474256863821396028826368423467989894814322807340423038476490479493539724174514978637027346425825001062584\)
\(\displaystyle a(190) = 16819577009313255575333120110931732043752920660250092087368806699585446617987355771810498124025458552346478787116965483890143575359379749485215\)
\(\displaystyle a(191) = 98208459134455557327141704999036140471726727877026545766130025537818479718342894283075141481770187680926781755423617621223735227024957218621191\)
\(\displaystyle a(192) = 573456399510516936988908172000619350563836173123215881699637795974395168935121921698020729461385073997911654927400318952221363925558201701326767\)
\(\displaystyle a(193) = 3348647292289677309742992562652183654851568713254481852388031663501391424022215908204601158836291746883917769259426943748914056814341426130886490\)
\(\displaystyle a(194) = 19554905678013031481771989084996211630217468594929178684208749916067170380983886997704061534253240704530282774795770132796730927491640797736091878\)
\(\displaystyle a(195) = 114198180321500383173526002979854976145647546737676745102048190866057208066135708670123205492450144877814343677393471667733726718579487999415155189\)
\(\displaystyle a(196) = 666929006854766706211116067607737231157512421241281551331069100919008422994410312158284090164995186181186652783472343192880476145533680387009809969\)
\(\displaystyle a(197) = 3895083950680668021869042172719069209280453059137057731832933773609956874813942477008141619608459741903887381305857444952343723301578450274959640111\)
\(\displaystyle a(198) = 22749437450213827589348313868562139590035320583076546033343958579698146719881358056369399412113741014448263243084299345430155176480748675238212963197\)
\(\displaystyle a(199) = 132874290393585563981466998024827965115192158543466788834559581859208285844159218082045678008231562626726044093507921322525685991687332110641879857322\)
\(\displaystyle a(200) = 776117627346913644834600741308756080179208653821257420998687465697034854220149591022539444350854109893236259797452652476214177571304731906009101433806\)
\(\displaystyle a(201) = 4533465003230716646371943352705489091594418132489914534094123691274254402608512122417727584676434201417622811568066522126490544187642884037380786820777\)
\(\displaystyle a(202) = 26481888904161422255436966236031189846800434273453870976106983633798033669990002100012738448549320666312559600817801191747634675416590872279957737329015\)
\(\displaystyle a(203) = 154697560727488586901738161992050332350010464997998003918253026120562235155571248369019909538635407491343627953371308856906895096348885749642811946132248\)
\(\displaystyle a(204) = 903719456126123242583943270992526509494050252350135086162283157772290125847429945545186129017949686083227854256003752834685979551031988729862881191534125\)
\(\displaystyle a(205) = 5279579165089762318655967047295670335079163301316625269061273893294426071379210231550110876648156633311500460836667862282238129883899292655306648671523963\)
\(\displaystyle a(206) = 30844684880887041839253628738937129634097631814768239232236070017679663564970189685741302983131375847860276846393071980972031192845791772253631819561217626\)
\(\displaystyle a(207) = 180209042184441094874307061869278453176804733488486166810152529413411371749694280139324104239004955474118419029687832888260270423608817930888196562585379223\)
\(\displaystyle a(208) = 1052901834663786370002597896095429480709893361763283359114176948906751742031676144480798533298374857207743013327610474030018134868330761611784009969835158430\)
\(\displaystyle a(209) = 6151968541968170311124225146684917795754633045523234503861604402516601048301812393700535490387094714692567647691523893017084379834835868807378404481626072322\)
\(\displaystyle a(210) = 35946375559951714451030630774898327281382714010852481191685218840260604808623822709433319167567209051178886095716592316152135172275096148036077312880589816504\)
\(\displaystyle a(211) = 210044225648473771246815987686073071326113678206223902663143751416315420777063655050606198003272089399152489020192406330082120061479285884851907073119549083259\)
\(\displaystyle a(212) = 1227385211886906956451599255992337776866571958076838043449379607442506682028725015998053768273733332461879250620377472840808704661807977142902736383711813194351\)
\(\displaystyle a(213) = 7172414673271649974726138733292905516456425271719795194893264636853379186103623199448050253435972987334711150548910687521379196456150393404032912102801564322476\)
\(\displaystyle a(214) = 41914484068107547854745192365613533941256496847779268810812363535335340435070323694229818810601134352299623556324282518483593158526704467158457407438727801543417\)
\(\displaystyle a(215) = 244949725676541323094791824027693784154019581842371012285347606498021618152591073281119159814282781116230334621785641131289486958037710198602747580865658367111321\)
\(\displaystyle a(216) = 1431540892000818695067990042409379276283763329754849472850828465263089697536909975821042156239029551353851201541238648019459231180055830286255849355266351771810673\)
\(\displaystyle a(217) = 8366511233621400574256375230633757120252463218384567300187559962627030629002651523843276044116196894563611749234661370734533226078184574119812410732123202424117974\)
\(\displaystyle a(218) = 48898861960251552153865689566951167764028617750854026473414842773928434715127624886475900328053312400538896542269515188215523469577070994950984831458822523446884693\)
\(\displaystyle a(219) = 285802940628891240440666123230441846796762045418444465390186772027788353742677869215111690542345620233247865885375342702676902330033754201451653621081211868676440811\)
\(\displaystyle a(220) = 1670506226711376432488991056525509499475524471443586958209797198211688902279181923439483727196321829630881667598294289254416277274646026775523647139905446986359238534\)
\(\displaystyle a(221) = 9764338972659378742440264256291272461043190806131376150099010352870836862305668041972748687385462212612585028535819466940654611251562397936912980922906934645692611450\)
\(\displaystyle a(222) = 57075643905591001233695138777575042418694713326974447943072184872745249145575606226861383938685747354044506368166807270569973546716291985003880560721370712778860493569\)
\(\displaystyle a(223) = 333635224698934571786893490525834308479974723429555514957187850010602435979616475505269971961417916881063248073837043967061966446235622476362034281676940271068518002398\)
\(\displaystyle a(224) = 1950320390653504535315467444946413099968752304050614241601890012011808086700923578338509916118657111121469067727251785117388901987237754789585858543349942052135162709568\)
\(\displaystyle a(225) = 11401261294042078834634465780001124251650950000169534780476529636877125503756390684286180334025956288396748331616963965229921240069272786661826395262765825557035685908063\)
\(\displaystyle a(226) = 66651909453227807307254409831499675998289055377409589413187165668684176923648843706527378309792544884445429836364495816076595443697820303112405018261550314794646524066085\)
\(\displaystyle a(227) = 389659204254467091110008223979849396637105473745140591087579864680122334625968058442758308019035809846314959618962582266642876207791268984557224217586918480194569915700484\)
\(\displaystyle a(228) = 2278084447569710884692994781530626491228214371175641512697434216804355653661701801378585071846405512761349505825794646360035788618865960768712097717418311651855993549333222\)
\(\displaystyle a(229) = 13318862209461970314609024125561730958295134927094503000258933243208823800670218452258299069630028163219256447684523675502068650598242714622081085029486845102816042887354369\)
\(\displaystyle a(230) = 77871179306788856627501272098479315878494971780821349280167230008399365982374579503659162113495037600704680362169689350681672236490928002644854470764288513419785152163543032\)
\(\displaystyle a(231) = 455300985572205582403121835820051517624028819186242715285869116290954303510869607276066397638837340510068261893978650120632440913209439544359605955024391664049972258607630344\)
\(\displaystyle a(232) = 2662150087196269981194547553628980161235052323054178259993695696201016785078003532801106293525771617659909694827813565086986379634271853522699148085497567419831148377315600975\)
\(\displaystyle a(233) = 15566052346535832285569886166777920868867955954699746691582410394915472219781241538324788296054032216769622486779926323771265902742511000671519466234911649456508783650073312591\)
\(\displaystyle a(234) = 91019896659451352845687189003748540104469699875483844746380394514092240633248627867783132217045520131975378973411337139359905412435146490589273201278363827578745226788922367745\)
\(\displaystyle a(235) = 532238136634263994893593421602587134861022804390514153745580830309440460183534137345801985952183991107213436777544281531882280869125641723554316651066883489857990379827940793091\)
\(\displaystyle a(236) = 3112342207906315274502876337708139700200344395013830403595345256471134305235577665351185088284854091030314827441047256298887125172926995983082207559649707027225560799238705881478\)
\(\displaystyle a(237) = 18200373351918789582332374760632639598646543155821721489784350202089366404172652574426715973139082320808784794480481076100518788193184889207462526592584743065204280628597757674300\)
\(\displaystyle a(238) = 106435071482540946802681185612027686909883305659305809910839684683501648268601607821216403791728594388463519318500246635307042301599042671224096981166025968106562639774972129529392\)
\(\displaystyle a(239) = 622444485993684965930683666947011092370323037381560229717929438232181037708225848079410193140730918988512884788675575620158546551966741021385472192923165743421035385754109329957002\)
\(\displaystyle a(240) = 3640221460426422003725837427043258818489760638065752162662089383625443997560957500318920168350448037373271411907617277788061165766442953152708229232856960039678270555924124780536826\)
\(\displaystyle a(241) = 21289536545021452859059832441669762334748642803435802008344441900239837205026280819950323868546847056393692210294533990277799021838957559732295327973916475576346287806313116061931940\)
\(\displaystyle a(242) = 124513297997037250541709603852744701506890080613530767641322983126616942474418931287576513150918090802784892311482625694438710165344064747394064582648235852419828671478151709669484107\)
\(\displaystyle a(243) = 728242971348247142140399519893948078127560275069019412384023644176782214510237126576434455663539537944911123098863737357061751022869205928730779391188423175291494050774535766000972784\)
\(\displaystyle a(244) = 4259393980029851284042284899488236145714241048671888841287436225605793700467201580841988534313985063013238606988490343525342196045323368430545082484571320081292607510215475633400747766\)
\(\displaystyle a(245) = 24913238199524480597144979422114171853546988257613070065992216166212660014011153402084209440679361234380787030328236783781925660221982616311445290894646787854375802325737244854154856630\)
\(\displaystyle a(246) = 145721393804715386820357584269204776536275502465174754397738267246228369879307110456731735410012693245251794584694673364504328744843221421828248171268532324522775847274261940192988773072\)
\(\displaystyle a(247) = 852367994766447686823176545804833055239006534559080656591419267725730552589009491388169943815601484851255186650158798493045171829785232990560023686695961276877864407682454745526036032089\)
\(\displaystyle a(248) = 4985876850070811261420739142712467257443763238038977192044574361327665633455501420512015379126136353590231360166566181018240504009955936686504200528722349325401784275718655766198416666609\)
\(\displaystyle a(249) = 29165301544618812114363803410996409164645660223157472697590890440252643506242497660433696521350822814615751937120135223619765657586536842859083909089553039513746922292241380702317513075785\)
\(\displaystyle a(250) = 170608954400284597162258378627055543262132639151049603937800772955242430124612335128491341161579496680239044428501595779740081951138615894329849882920376334027936976985551172950204248765062\)
\(\displaystyle a(251) = 998039006857889562794303164106959372584187596980324303498966678006386250052994708375691001735603136433193937895781540847007067067997593134210729447309933918885163120350691416801905762251947\)
\(\displaystyle a(252) = 5838529395936326950298158437493302317860892753702530684198130180462202447573187336412045602191851418248081092354645953930732507007995297634342261216685997252841407102899826213010041690486336\)
\(\displaystyle a(253) = 34156204704824176581342808983697567038467023806477721538154426521865020219194536465683620052432263988326170983582757586929155346517131574791893399611987073732085954010772507234340327074618372\)
\(\displaystyle a(254) = 199823170314156829686452290457338414729636299157739631803813037715456131772066664444728700047317346307026335916169000453174029203095352878442691622980231185763774408227933961516185761229621726\)
\(\displaystyle a(255) = 1169047356119200535322891720853372594928208350974780620539078828499430941353525979085761248481949756110606149469243445734719968872142418016939350125352000386151909399302795680219124448984007311\)
\(\displaystyle a(256) = 6839562249731270199711233055367996918722742491722269276495712733817380036125645974474792017291557595217115762228728821398578030840721038001086503282671168118118162207682670620429028060968519802\)
\(\displaystyle a(257) = 40016064596107967399270739295285382198862475976122269611745846316296824027175630521794450320196025243268191299005013106663326991817558268916331221037163649333781852748580920560100255982726955498\)
\(\displaystyle a(258) = 234126317471316919489425428044244310680013859270838675843691449933650332926031159719577874734861508890864888588180837741272297476589986362453724327414985309875268379298364744814405447745628366747\)
\(\displaystyle a(259) = 1369858811156695068277744634410429797057897849939810100972664472731100851681065376109031852281030113567063519118639959067578868139510300247189239558165665093679506944944172244816012738392121454624\)
\(\displaystyle a(260) = 8015138304731175050128538357829359471452692042496839828849112737474915739774343525091900085473395624744009301216193449389940873725922702073573391066417831934826960028462120886630177344487670446184\)
\(\displaystyle a(261) = 46898159574579834303078841889742740577430382449255044972123191936319114615002564290271287157693974541811403074143587111734947960897065316756428682861270119010524837600525586187857256407588369200776\)
\(\displaystyle a(262) = 274416406300653051110579243366116334288034468858944101791679025232046349141500811521266911709516163691372794107171827361688885070055097230404810059635722584000707044531854436399192235257170059486010\)
\(\displaystyle a(263) = 1605734603080959924714169880666873155083497183007050487526805193006294849112576103193672930378247593974801736810207544860456509570933211454310713154600822660808055426005246703555997282229138353421856\)
\(\displaystyle a(264) = 9396082256984010727847624895251437499254846687247301890093982880865906052236210944148587342352634894294088741484955562634115728308399404300169752977523436969453622776947953964324264452390639748800026\)
\(\displaystyle a(265) = 54983088756895032135326448770662444203061572452854935650860483392748624459603234649670625104578801546934934852910715106954693703998688337177346417900660070569563593679477027336131414457480530070121028\)
\(\displaystyle a(266) = 321751563830295549953193642354571063024658148278169054228086539222947078675123557200798214456399832722736854559943774086763824523521257062788723959032746480160932689948351421735477388882593501156674055\)
\(\displaystyle a(267) = 1882874355637618112871474318108721092161836519553867969200752443264562294139756524367295441873373752108313957689549336525172123878794160312799042403534475105638422248628078767102293028641558193553454882\)
\(\displaystyle a(268) = 11018718483055794628078045114484216648273313714199214813358405969395043470907591223642850113416882208162460694193032993672256338607266730383548702759466890848024759795101352148234741741562833383196375827\)
\(\displaystyle a(269) = 64483683830718109499166913012423996477546603921515664941738014599850188257204193173134455277602930673904819543966704482378747550667617058702321767336502619780339222425796674474636330501481292019123958251\)
\(\displaystyle a(270) = 377378827992965772822232023259793790418303332256353935751558253968694515533465835858288572956855352183897428892290223555982131604721440463521104886751732066734555673597967565567196693334071903147454517188\)
\(\displaystyle a(271) = 2208584886455920899467690900657342496741044387444239808931115760050247372427234912821098633550890997905441623100997597435292443370082315315260048175472174427017379108053311084975092825227365144978255608149\)
\(\displaystyle a(272) = 12925860615060945371366830424911233410145591326059797711344377350365408431175744949302611635402043068768629063963245426248204691329575278881836557274786857524938038184165162959126488907417433036448807133395\)
\(\displaystyle a(273) = 75650810361188753246502194026676057821927657852290442951134674416352688256019798789250838142475485748522201133618713119367169236119343869113580627093541019454253105902092473246498815096742040477821083411959\)
\(\displaystyle a(274) = 442768157645193204567028443403643168200153572454685523459684215442783376921795571255627317383187255534716251872229219143366692353750271590595003124410033023991376665204864609859938036556561694448027787780561\)
\(\displaystyle a(275) = 2591479591788912935372502668313782759695120834654663115616495911274501239126369550412566181680144147174936506787044007181061754311598771639613810152741809807119512152818560816542339243884834526608588059201149\)
\(\displaystyle a(276) = 15167980450217595254843444687650159791071521889422329070665141101810208471899952858123965351063129649244273471409196462700833093618474635977279760972933988177673732933653241418151324339711909511935389140598796\)
\(\displaystyle a(277) = 88780220682109096257078653199469326694502122741850331594244213294510772756609044523164716119487207816615891726718514855175729136282451079228863613274370865195849735633271000245572335186755812747291348972824450\)
\(\displaystyle a(278) = 519652608935986104494127997741249284752732851184305639596268104904806528829668070451688001640840744461964246305743133714577015835834845380957860180369231312845422009049756167088248595661511873208864163374139322\)
\(\displaystyle a(279) = 3041713990176744176916677663907735119212439971505367324128512134946843935504583553743146083441530333214849630148895900487712328290433465438209881653057737839222871878623100462895893894508263506342302528886394404\)
\(\displaystyle a(280) = 17804588894799424961127499576780456388013264299938477577767666066287189038617462070809182021887243049469987872654122210430983944214738220696473691964870451215741582918974299463553363917686772368380587326636019078\)
\(\displaystyle a(281) = 104220650157774570769274976218859343502277972826676109362143948113850238097031113800002368528357165632013954411133653442526690234186801012605137829673501393666017662022054054160935996244973952181622081109131163354\)
\(\displaystyle a(282) = 610075802864334499030623619723040463841370232014230764968813880937274002615831169741723821767445991864057958975769553547210074444519677783498628900524819625367502349340883823666578420732437310090522429332243482642\)
\(\displaystyle a(283) = 3571264022350783058598152767495832404523887577561666962652339107533145408581317420729343754246383780668617227320518872252642269548654389508699715969160799708428365286850984703435161683519489242690776027120326613567\)
\(\displaystyle a(284) = 20905867636816883446334679304887470147500814435914934527354263015073631554076356282481829108301525392398271893765814050180372414248611056426203337835405064845972720396331665731739270043693841476751841542380735754175\)
\(\displaystyle a(285) = 122383383765561265999564914595187502967769591869588417322290415554805833254212374205833002140571021086057449359320832602651741571222187596748140210141062227329715841270003637044292000084479662504773221696846488223070\)
\(\displaystyle a(286) = 716448015143382786672796385208683982952005382630375662224311777814905864564984220792675431356866901739674079427964482138471820880071608269014598359329652706886715818856983113637415074050933440545558954744440362526718\)
\(\displaystyle a(287) = 4194254914764517902433771595734199766666486940573547291201903589191439557374503158570757608984908294403832516458514792319033625351040088453314284243338677605234709850626876658653623574415374869440215949881903057603212\)
\(\displaystyle a(288) = 24554597340294765107377367762586484863173118248294880968417083834004861273945955943650970134109337838911498063860388296108262116592108687451973055009099673873361241639657810188009777890219545324495986567761673150111200\)
\(\displaystyle a(289) = 143753561591250501408933376308118770512268414570163498744396721170769793272904801194015334611818884593568387039588301460097277035872303347193472230873388456959089977283911847688945663858942571871334135464739694763965747\)
\(\displaystyle a{\left(n + 290 \right)} = \frac{1656815616 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) a{\left(n \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{98304 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(1283678 n + 6530715\right) a{\left(n + 1 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{12288 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(382392113 n^{2} + 4267788273 n + 11773860420\right) a{\left(n + 2 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2048 \left(n + 3\right) \left(n + 4\right) \left(55473308372 n^{3} + 1010612023971 n^{2} + 6064699448269 n + 11992550253810\right) a{\left(n + 3 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{512 \left(n + 4\right) \left(3901487351843 n^{4} + 102446109838568 n^{3} + 996586889915533 n^{2} + 4257818269262548 n + 6741755231271540\right) a{\left(n + 4 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(636408532703 n^{2} + 368542285800184 n + 53351613813406161\right) a{\left(n + 289 \right)}}{3492141025 \left(n + 291\right) \left(n + 293\right)} - \frac{\left(19090992899794823 n^{3} + 16498034565411380398 n^{2} + 4752291417096995800473 n + 456290248117143284979498\right) a{\left(n + 288 \right)}}{1155898679275 \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(573963258532661715 n^{4} + 659050114326292107815 n^{3} + 283777746746924051313807 n^{2} + 54306276087552913852971661 n + 3897151727804713922729581554\right) a{\left(n + 287 \right)}}{1155898679275 \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{256 \left(21165957185744 n^{5} + 746760718490487 n^{4} + 10410037904808806 n^{3} + 71688067671773493 n^{2} + 243888940568895230 n + 327915915587293728\right) a{\left(n + 5 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{128 \left(2289387702185732 n^{5} + 92233692762492725 n^{4} + 1471291432865303695 n^{3} + 11621202652872503620 n^{2} + 45464422593092290188 n + 70489602020902991760\right) a{\left(n + 6 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{64 \left(40184551496258657 n^{5} + 1819499197868578730 n^{4} + 32656709449061046535 n^{3} + 290618976878396441305 n^{2} + 1282967898623250508053 n + 2248460905690198075080\right) a{\left(n + 7 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{32 \left(574016206801003383 n^{5} + 28848485599307207540 n^{4} + 574887610795584664335 n^{3} + 5683607603300442812665 n^{2} + 27896577779848400783067 n + 54410155536391688146200\right) a{\left(n + 8 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{16 \left(6558170495177825499 n^{5} + 362185551749017598830 n^{4} + 7925827994224634544590 n^{3} + 86023485310124636541875 n^{2} + 463541120301558863598736 n + 992850225424903419233760\right) a{\left(n + 9 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{24 \left(18683379829672924876 n^{5} + 1124318963727586016025 n^{4} + 26736892832884194544020 n^{3} + 314738107566078059323665 n^{2} + 1836927046414154824209114 n + 4257498538712848409481280\right) a{\left(n + 10 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{24 \left(43719787518070551559 n^{5} + 2838164721412446579120 n^{4} + 71846393800518390527515 n^{3} + 890498758304074403011750 n^{2} + 5419399891493430589114296 n + 12978103536460551792899240\right) a{\left(n + 11 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(51550673670761827865 n^{5} + 73784071240662069129863 n^{4} + 42242274545368294094723489 n^{3} + 12092007413119828281241100977 n^{2} + 1730676719181558124608649779398 n + 99080896948004350211691226486152\right) a{\left(n + 286 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(174152032701076165124 n^{5} + 12491368252639652835435 n^{4} + 368767186904301394943138 n^{3} + 5531497006329030397993161 n^{2} + 41753270028284687327753510 n + 126047673730509122489197944\right) a{\left(n + 12 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1845274828210175394117 n^{5} + 2631954108409738911841361 n^{4} + 1501592148639865768930476617 n^{3} + 428343426642504125000429454823 n^{2} + 61094015813071734253269377168242 n + 3485472672604135432949104358721912\right) a{\left(n + 285 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(15563226008836895856404 n^{5} + 1190491211658715830171885 n^{4} + 36605414856991169684199190 n^{3} + 564055811871351857762718735 n^{2} + 4346890555522067768122512306 n + 13383181683364644409320737160\right) a{\left(n + 13 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(24052446749142200591964 n^{5} + 1977617035793620775221433 n^{4} + 65065668177989015668893110 n^{3} + 1069425849918530174585820103 n^{2} + 8772872745739456412823287254 n + 28716878749688656274238762864\right) a{\left(n + 14 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(68586558024310619701037 n^{5} + 97484164833180343240956285 n^{4} + 55422428830739005980921052125 n^{3} + 15754457971486088635235656029585 n^{2} + 2239173869500996981798229692805998 n + 127300058403813947825281780536210090\right) a{\left(n + 284 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(141376671294692070618802 n^{5} + 12512295856400070685328291 n^{4} + 441948446471496665176730670 n^{3} + 7782686654800778266730050639 n^{2} + 68303907788433041531250020474 n + 238953799728715853332803880680\right) a{\left(n + 15 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(6972567523439913808040507 n^{5} + 9875393210374856202182452755 n^{4} + 5594643887816896439908426180875 n^{3} + 1584735919410271761190294479505125 n^{2} + 224443878968230364928606846169899178 n + 12714961063208210825719306059007609080\right) a{\left(n + 283 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(7049520834738172148250862 n^{5} + 672091248422050165643256295 n^{4} + 25510358867465471135564938240 n^{3} + 481838072406118716029445379625 n^{2} + 4528973234736706618949243850178 n + 16949296117897280736888911719440\right) a{\left(n + 16 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(30484227137374733505526537 n^{5} + 3130139862909259596038420425 n^{4} + 127616968757301925329129378785 n^{3} + 2583624709878766973277184408955 n^{2} + 25985703485955292079104564501578 n + 103922765434082280473837273003040\right) a{\left(n + 17 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(77324106136800250791400549 n^{5} + 109126989942897538167596426455 n^{4} + 61603555175479635017492934314335 n^{3} + 17387843751161258228446482712123745 n^{2} + 2453872771031288377860642359110868656 n + 138520709895762568205473361956888425060\right) a{\left(n + 282 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(108198461588494870957046983 n^{5} + 11986979676243929336829119385 n^{4} + 525388776260763355674475090235 n^{3} + 11402423002161183760643734782195 n^{2} + 122665946434835638808355478354962 n + 523774416637491437775332853781920\right) a{\left(n + 18 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(237073736322126474488416649 n^{5} + 29215344103483135466293822305 n^{4} + 1407694392369102707464137593905 n^{3} + 33300766612121897211375140339595 n^{2} + 388024034228953143089488854283746 n + 1785910118463757006359106935671400\right) a{\left(n + 19 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(511722463195421806937622924 n^{5} + 47939740308166038855538880415 n^{4} + 1734347521273476059410731603470 n^{3} + 29848733235838522541911500344265 n^{2} + 237354865713192108803090769191326 n + 649498788164527808516369735811240\right) a{\left(n + 20 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(1013602289141176767339963821 n^{5} + 1425377529247359587522977425980 n^{4} + 801767586440935225419080487855995 n^{3} + 225493155236365500271933449035396580 n^{2} + 31709144252507005963830193626052069584 n + 1783577411728289803557139921265308328120\right) a{\left(n + 281 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(19805701860368918689327108763 n^{5} + 2336448613096914421156842677770 n^{4} + 110074975810337648799032838076605 n^{3} + 2589096658997943576482904514140710 n^{2} + 30406481650455690348695495630278312 n + 142642163373439750569353300922184320\right) a{\left(n + 21 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(53656759763603979375849951736 n^{5} + 75183401023335561544686006374035 n^{4} + 42138169378967919114587903227766350 n^{3} + 11808522284838100373085952721177801885 n^{2} + 1654556652468892708990392012314488033114 n + 92730782495018616672189128350424071300320\right) a{\left(n + 280 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(139599355084996816362738378753 n^{5} + 17540504589644904743391957107545 n^{4} + 879589483917696853370958632269885 n^{3} + 22003301053774021291762797661115375 n^{2} + 274570020704378937322637573995488362 n + 1367285693214008235981554913931479120\right) a{\left(n + 22 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(214474003765841291320749329988 n^{5} + 299432116267440037039365103915895 n^{4} + 167216128978973762662514735982630935 n^{3} + 46690017457890565160172430719174222430 n^{2} + 6518324840399755008345026597188477253092 n + 364002234519298109189796672589460437372920\right) a{\left(n + 279 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(340755380460085625257296263347 n^{5} + 44875920452069317628744478439660 n^{4} + 2358741545366627073485900202665675 n^{3} + 61840441502001411372421618167746030 n^{2} + 808606659803710809359068356029124468 n + 4218261782073455575813746733604550000\right) a{\left(n + 23 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(477898747513564235323647233885 n^{5} + 65595190488424854721972003163836 n^{4} + 3595394854301821206132379981780363 n^{3} + 98329399387576643879347384921992044 n^{2} + 1341387793757066390130364656901310712 n + 7300725977024176819242859743076835976\right) a{\left(n + 24 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(952131224860039615194914667314 n^{5} + 136103995525527176286035731776937 n^{4} + 7783322367895533880254564199144472 n^{3} + 222315767004302456738764257770148863 n^{2} + 3168972642719886489419945449103905622 n + 18023896430277192365154185619744959088\right) a{\left(n + 25 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(3886894362870153727955518908729 n^{5} + 561795082277494180825026708888635 n^{4} + 32165810304194488799813746194426955 n^{3} + 914243890326363520431600763349648815 n^{2} + 12924844700087287564685885153579760806 n + 72818132844899853057034991212889142240\right) a{\left(n + 26 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(12524606616225210423086606238742 n^{5} + 17422318741238685904879181706579525 n^{4} + 9694016607816992006934594353497338340 n^{3} + 2696916669357686117656812157252807100535 n^{2} + 375143362183404109877797059870006273121138 n + 20872908518700181944685841977280104378694520\right) a{\left(n + 278 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(25335518471977687210717693401323 n^{5} + 3830857468833259428571310433889862 n^{4} + 230909691142378243711807574849585797 n^{3} + 6939080646293551762671244190580189070 n^{2} + 104003370410940288563510791445541173964 n + 622158486268574149802417592835240948824\right) a{\left(n + 27 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(168002842251590617932197953529834 n^{5} + 232846405644117140112912639074843315 n^{4} + 129085736884528993490641090988007133420 n^{3} + 35781027579520495388075318894374849179385 n^{2} + 4958989586333110711643352778684569859674126 n + 274909288971430280790169858786632994434073680\right) a{\left(n + 277 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(191219992484803040065332878062966 n^{5} + 49966146386833883683718451000886141 n^{4} + 4516345216804558463545768190258293460 n^{3} + 189673431946927865420280644925679928303 n^{2} + 3811697077789237111738162392889962893898 n + 29763095125518383695642202684102913032352\right) a{\left(n + 31 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(229197714744230290223009056829773 n^{5} + 35757621753513372875931507719992160 n^{4} + 2226269671243195023698733715700976475 n^{3} + 69155315765876916038444518314025153600 n^{2} + 1071944623955407813191769949794867975392 n + 6633687181436748461743273036673538165200\right) a{\left(n + 28 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(485312698194362928752282537425225 n^{5} + 77770864854471595060336794358820474 n^{4} + 4977278201871638181868995297501186787 n^{3} + 159019419475723503246111537375502600210 n^{2} + 2536206418543549065332226782492121446896 n + 16153932571034478139512486453188146950528\right) a{\left(n + 29 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(1040570804779266123151355802434913 n^{5} + 1436909474763178599251085709119624625 n^{4} + 793675273115212940518326560307108023075 n^{3} + 219190628029132494200190229381928081875655 n^{2} + 30266820937028601259876295368774429061293792 n + 1671734566753226709913536559294210981607976900\right) a{\left(n + 276 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(2599845024523989838114038267690927 n^{5} + 423403662944753241948422831188481315 n^{4} + 27563522486587206680905722711506826325 n^{3} + 896369463106286893627806087537334894975 n^{2} + 14558384637665144767960235609441109872138 n + 94453072413263119084186201695611090103660\right) a{\left(n + 30 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(4781625046554322073079100544711772 n^{5} + 6578589089429221093164427908804754729 n^{4} + 3620308065793676215261452887178390209346 n^{3} + 996147934812421913462927619426606346578719 n^{2} + 137046421342794026995654043990949466200978930 n + 7541662654094929489475806423855545243456889512\right) a{\left(n + 275 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(68678843802305859006852033296956021 n^{5} + 12404814488925765504176358845090360170 n^{4} + 893096675083135806749672296278278571035 n^{3} + 32052336073168679954293505319399426447950 n^{2} + 573635127053474286749027165793526100754984 n + 4096821499520225023124181745843114235721600\right) a{\left(n + 32 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(255610073922481744294100775446621069 n^{5} + 350372439920439948097412022408648671670 n^{4} + 192104389210936600662924442863304774355155 n^{3} + 52663538353335935695934339330974569455329830 n^{2} + 7218520345128713407856007212126585758125737796 n + 395768959711764198957156809653677914884400992440\right) a{\left(n + 274 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(364979491609689494943412351443680181 n^{5} + 66820455133909807909427227486689513500 n^{4} + 4883578083378679907444869749058796891835 n^{3} + 178127842879030503608183586688997755886260 n^{2} + 3242998829503595840938053267996607900020264 n + 23578743361164165636366779840976751241489280\right) a{\left(n + 33 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(437838448460846222667821520026486553 n^{5} + 127387796738128876744928467003904379005 n^{4} + 13068298609782094161211848853053579091205 n^{3} + 626791856129693019019265739571846137761335 n^{2} + 14418602401510327868749755611210262645964702 n + 128974519356056005536935266213314109439829360\right) a{\left(n + 36 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(459334771322107611732076602532218333 n^{5} + 86363232184945475246641706869742591729 n^{4} + 6491818389837000536392875207737805668045 n^{3} + 243836901026942502345117162503141162351563 n^{2} + 4575961479063983490379877968658076376121506 n + 34321445431740794159227829627467804577414640\right) a{\left(n + 35 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1185951765898944676900491584123391352 n^{5} + 220980603745469534406976102851050197035 n^{4} + 16449549283518416821123624492812311423490 n^{3} + 611483964017965607055349873867091120768745 n^{2} + 11351555855478405105460283708583484475502818 n + 84190437431872867024742108658507476452913640\right) a{\left(n + 34 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(2550930773203376725526195755547564049 n^{5} + 3483703009468587243700823268183743834350 n^{4} + 1903000092999733917611480436886798287953955 n^{3} + 519758676966243751446704788464525432569476610 n^{2} + 70979011181767518242853578280218279472979045356 n + 3877157031257540013405392511894162020427126522120\right) a{\left(n + 273 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(8327735898511878608839942136480361233 n^{5} + 1722336605276249599889704586832981497445 n^{4} + 142035149316602062147167349256513451066925 n^{3} + 5840162405295260007538273359843427372853375 n^{2} + 119765760182928536898175051843095997762528382 n + 980200287993667243178046251971485645721371400\right) a{\left(n + 37 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(23824777423425525983746357336693981086 n^{5} + 32415884273602149826536998389772702868565 n^{4} + 17641763310745096105993244443819452200072920 n^{3} + 4800552494249584504710679567809655408629752495 n^{2} + 653138934640323252050057858061445982525197583654 n + 35544714779166568938054970284318122871694558053240\right) a{\left(n + 272 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(41742694133772020138268300083954079028 n^{5} + 56583833191485976839598493994392356344135 n^{4} + 30680273016163582490911060660536950820733374 n^{3} + 8317466457439352175085643846312921801517267681 n^{2} + 1127425577050727580969414485432740571131315404710 n + 61127929487861697647283743671046350435497078842088\right) a{\left(n + 271 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(54266541704489125194591651618001425649 n^{5} - 64233637755328660080043394152853663320 n^{4} - 1025540225687475046566184744935760159034985 n^{3} - 88563690616309619001869579453385712274444540 n^{2} - 2875464409864615000326658665697420043885225524 n - 33231205992332116242564498075739115410254451800\right) a{\left(n + 41 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(63783872434047201614947447942494008099 n^{5} + 13558943975112033383832019396466060471784 n^{4} + 1152246907989708367479903316291437558425829 n^{3} + 48926193959887296873050781906020332788172104 n^{2} + 1037960271687116470354690665440906957698652200 n + 8800875582559479801233424169137254852401968036\right) a{\left(n + 40 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(119481593341636122715128403603065629607 n^{5} + 24932662128305171038601866867418669174370 n^{4} + 2077400413916129094785616728091405686634805 n^{3} + 86400812349045240403413052859256002531952990 n^{2} + 1793935851650912120086289043588123371277913988 n + 14877066563429363804164257092781213244930887000\right) a{\left(n + 38 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(352484415785044053455036231462683382707 n^{5} + 74545011973955373424390030711984022281980 n^{4} + 6298862894118280311832591638936785605525085 n^{3} + 265820730774015457084383078300699738320792580 n^{2} + 5602829868557588592602815945707524447053905288 n + 47186436144153775530241545060697238067103042920\right) a{\left(n + 39 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1718446257401341006602047256118062476631 n^{5} + 2320743294736820115047334661823077151600805 n^{4} + 1253640745903354269001610898825444058191327655 n^{3} + 338597662413292381249987731977821436125542148095 n^{2} + 45725627794712849893455669819622861217295526411574 n + 2469961896472880026333041361633213100535453101852520\right) a{\left(n + 270 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(4221013205653150129958544295697009170903 n^{5} + 989574163340974546051857438001414102748723 n^{4} + 92623638761898945924922962233168861011832883 n^{3} + 4327167603981776433453753267574156371797228413 n^{2} + 100912190746220527128268823076921274177996098998 n + 939886683283658960703343350090449892837252730608\right) a{\left(n + 43 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(4727674560116978940706083644759467326769 n^{5} + 1106166635303700013727416207663572394598455 n^{4} + 103156249456144468478593149082058098304213145 n^{3} + 4794758026720123868251535540216895795742044665 n^{2} + 111118193636924060272850436254007575386877949806 n + 1027463001906004843125663108327370719210853090200\right) a{\left(n + 42 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(6661013299284960975224854805546141826348 n^{5} + 8962044848067810082476202467604248230264155 n^{4} + 4823126586620722136109188008640539064684556590 n^{3} + 1297821485283011683461597401075301752307555388655 n^{2} + 174608754010083234438034075270068642484505298162832 n + 9396623184746738504025300274216803127984373516476320\right) a{\left(n + 269 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(10177839983341906386429953727480087275397 n^{5} + 333065398557851937853495961304911854548630 n^{4} - 171054629474512593224128701497775405473213185 n^{3} - 18016996079743110996388460719565348092999505250 n^{2} - 670000299193109832338716139972484672995571855632 n - 8740865014991159104046175444015734583113602372560\right) a{\left(n + 46 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(11315722142449368957402800081460872286410 n^{5} + 2675069363728066969712252350173155201612825 n^{4} + 252663903629183991537880036446296164689913580 n^{3} + 11918463972323281791325369334566447248597453151 n^{2} + 280783416652715211649366216650770290976518529930 n + 2642975967591591042679857572979429332518368536112\right) a{\left(n + 44 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(46314947901987839636214787342565459325526 n^{5} + 10929852385018412677207180114826169021135445 n^{4} + 1031084618547065345029298105754912131296624510 n^{3} + 48597134177840054452236511996631548088220786305 n^{2} + 1144219314872897224365147319957164229074488065234 n + 10765443334458285181960451718441264602689971748260\right) a{\left(n + 45 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(97401960680621557336845269344455508978391 n^{5} + 130558912223030181324777994048407496839351685 n^{4} + 70000313551609607814755835628466697964126802515 n^{3} + 18765411918101645849853865302597880004883251159195 n^{2} + 2515248367234354518498057293434676475630036695493054 n + 134852280797726866152737276541582199235267043509753400\right) a{\left(n + 268 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(531151047413147091721205633049962029652854 n^{5} + 139092931469957895229576652731113505264669005 n^{4} + 14500037460231022512700648829364722225750708940 n^{3} + 752681401386169399196848782627031710086120753415 n^{2} + 19465490902063172816071988891532426159339447899666 n + 200730012689238458189901307823725445068781991258720\right) a{\left(n + 47 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(672641871814730179017696545303520577863502 n^{5} + 898237103597861785622576190609619393901739245 n^{4} + 479791597667047695222592798034575960741987664740 n^{3} + 128138270182002609600375223161942433262245373285515 n^{2} + 17110773771227377775704337495905695264127095425683678 n + 913934359407408088389881923933188481981609373763779400\right) a{\left(n + 267 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(982878895365567691261342493152368261265615 n^{5} + 255440879929127758054860793067451862645317907 n^{4} + 26523755541164047565663411707202473308868483651 n^{3} + 1375392863460557299058128502172163947257895340541 n^{2} + 35616567423489638672938012118049561723909462639214 n + 368460005507504285648386234724537058718486545306744\right) a{\left(n + 49 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(1052696038075782438631225283876958474169676 n^{5} + 273735016942208475315438171160222167313187525 n^{4} + 28407570910742644118232997425386810648109070010 n^{3} + 1470957079714300632061457590032065953555767595945 n^{2} + 38009673841945151587023270574864200769905410318024 n + 392161170573654828670044415119814807865333891635200\right) a{\left(n + 48 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1131049700412768665742253360464307036174417 n^{5} + 580464420795870937307979374885681686315530550 n^{4} + 90768995631413353881641096462252206038077506455 n^{3} + 6339124571092188450675772652870496391201163267210 n^{2} + 208071886735146622506750420360177173894585714776448 n + 2627485805061889053494735400414410692318646771031120\right) a{\left(n + 51 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(4393650709141234567523401711968627282207829 n^{5} + 5845168421205597150831265671407811907832756420 n^{4} + 3110448524032036758493985845525952938752385130935 n^{3} + 827586715706490039479288167283008277861171537065240 n^{2} + 110095231483357972860219168360210311581996877557000336 n + 5858386254503672327613934860585861807525508580859073920\right) a{\left(n + 266 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(6691074906317189804327689358441932679738351 n^{5} + 1700759275871077310189340697118914289692542855 n^{4} + 172747107937410577998253335695982231932115186295 n^{3} + 8761085350314589291622694773132903436626573316225 n^{2} + 221782692047426557945053217265656139736418323802914 n + 2241024802785917524591589205749081505879663910887600\right) a{\left(n + 50 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(17794303865432491897435164667865901129636648 n^{5} + 5183603508590545607632508046727092833402730505 n^{4} + 599382221714042661584273537627003707997788452260 n^{3} + 34431062516126542948355214634965354816647308163585 n^{2} + 983545987219031390979460422856906180870773914568082 n + 11185684710211524592086623332055579933385860808410820\right) a{\left(n + 52 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(27180495729036888634230161967020513093873088 n^{5} + 36023781594660800228500106429154983501257420615 n^{4} + 19097462453147203567686341326056489298605496528810 n^{3} + 5062050584427099997267959897866018542093588372389965 n^{2} + 670875220395967242422546958775701927582512132274160802 n + 35564070715792500013015177555398592486535625166222889640\right) a{\left(n + 265 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(38220799045502333532902029462567539804012458 n^{5} + 16103555426880328915576294656061538379879388465 n^{4} + 2428579922528490064832353936092630675137855990360 n^{3} + 172221156896630274642537316614686256951354349513919 n^{2} + 5873627119499215692882525514046601440027882726638310 n + 78014180761128959912580285048733856444899986880356096\right) a{\left(n + 56 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(111669960118435372923828122396738880234803561 n^{5} + 31706518706035004044213679195944887917065963945 n^{4} + 3589966387434667172931678297849742158837232285885 n^{3} + 202651279143865406359184635636270437821905424549675 n^{2} + 5704169446550652235173260359843960473297575187232974 n + 64057163487871479572297453383399351347599479072051200\right) a{\left(n + 53 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(159444016027345056777403745388020773682185918 n^{5} + 210521508022640818575709937436553365182953968825 n^{4} + 111183188017175022002220245419339202686741076304820 n^{3} + 29359333450620132327506683741907953074960397021256715 n^{2} + 3876302681689242110557649245869251066806286317814173402 n + 204712132693393753199881126679787120151339560017459902680\right) a{\left(n + 264 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(180647876210813795245650034275994520945660134 n^{5} + 42427422523117301419766897858716608243734319195 n^{4} + 3816055867006209075765831792935863926080588648760 n^{3} + 159714879331895256437530694955323544357606037662105 n^{2} + 2907444817467157402468838660257257732424422356758166 n + 14347978775146461297474902743801755558614163167562000\right) a{\left(n + 55 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(203223968055414555107122924007484635051922183 n^{5} + 55935206345396400420385064585473371954626154860 n^{4} + 6146510220306953010076496057887565982858111697685 n^{3} + 336936457096849549255075218790137484585978015516720 n^{2} + 9210178954427723328062338176076910974293047282339992 n + 100390179016850926242502544483617050262330866051658920\right) a{\left(n + 54 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(268702059325765325082130744339935263270738543 n^{5} - 229331377100424582886217006792124377556019172220 n^{4} - 66113994325047722414800811023271131820262089088615 n^{3} - 6378488664775924093211729656338088234002511748134920 n^{2} - 266941841424884183012149918287854634541879765129334228 n - 4153485527422117842292245820763727727954584604081103880\right) a{\left(n + 59 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(887924135970774006436089175323643654448399729 n^{5} + 1167928367847403050436369609794076731149705453055 n^{4} + 614484512744569073156593662122240073070345627860045 n^{3} + 161647905143837355572335780295074232606446377762105645 n^{2} + 21261486651291095457652128956132335802037798540169237726 n + 1118591651300698709784370621163963336836478529170306926920\right) a{\left(n + 263 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1003726316245824404941416659143508037162832684 n^{5} + 328526516153226913204091392641891385381677655135 n^{4} + 42262262539272722170667114971535086495621474764290 n^{3} + 2680490389133574796532227696914003367141203069251165 n^{2} + 84031008552072972299209242320834482949376823950606486 n + 1043537906697228990598476063173991820624704771951276000\right) a{\left(n + 57 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1602669169643908417144048370854120751302695957 n^{5} + 444827297974227162725563397843090769374360489490 n^{4} + 48498235570004277570695172921526006439928686977535 n^{3} + 2580842570544880362815772447907253257685935591358010 n^{2} + 66405187470320306234134660446758255764793440249531408 n + 650170912374333063872741911424989355194694140652532480\right) a{\left(n + 58 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(1801350814153739585028093260453171498154556281 n^{5} + 987061722180278207020146329656243968594133473505 n^{4} + 174326248861942227330072104422921020535480492409225 n^{3} + 13962431585352172955962277075625770071623020372545895 n^{2} + 528886795234847836846776843716383876118735282788467214 n + 7731340021553873137032198121721704242514388931328448340\right) a{\left(n + 60 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1859353591874373551009456732616343924248864659 n^{5} + 1747776329672931596685764403286277451587204746645 n^{4} + 357630761729820425207482685167975896016920858287655 n^{3} + 30638368755040365582105875743928939086401670528602935 n^{2} + 1203787207574037739296798728502011149209158174061189226 n + 17972034817705283782932361938308895503707213983833428320\right) a{\left(n + 61 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(4699282818695109568059573348505756527525274087 n^{5} + 6157716645851106123124891615235521658298180013960 n^{4} + 3227469998060984568584811765028717329271816925780065 n^{3} + 845802842046341668529802766749498402038188829572196540 n^{2} + 110825700033274058199282644752361730865906797367759624108 n + 5808529962556686944120856379992853326024021469354896601200\right) a{\left(n + 262 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(4732107653799330014039231049060505552910730852 n^{5} + 6177120653866580693176514620918870896176708253175 n^{4} + 3225313836458144273152649160963868220659868516384298 n^{3} + 842019831759693989906491220489480394501532349306774333 n^{2} + 109909975525474345727810694505997673692472973131369057102 n + 5738605150788577396642505558121819921985191433771514075424\right) a{\left(n + 261 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(16625929356305493238681008619811580575703290959 n^{5} + 5726236686884530027525805956220219775310308762035 n^{4} + 793814846239317670915310643294362037934282368926885 n^{3} + 55290397800862826829177132631699939399064572687865995 n^{2} + 1932388529421902212689266878394627221680854462915486466 n + 27078850574869498935345084436050663169573716637249863000\right) a{\left(n + 62 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(28361337597844067650997864219090814032649385444 n^{5} + 36880518693985000730704270519534897100379350756035 n^{4} + 19183233669344983149560678441122594102053748293043610 n^{3} + 4988972593472773778026805034803199430403655897322697705 n^{2} + 648731416504951715153556315218989777351631101344679008246 n + 33742188424247075963660862345294481483440717480093670312380\right) a{\left(n + 260 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(83279337080947321105592948194853991746876800693 n^{5} + 37312458882962283806317257322746501443403635387505 n^{4} + 6224587807284499048999364856554307766393770386346795 n^{3} + 496784204576345697886721527033343393397031566496699050 n^{2} + 19240507703540929674511923721771477648031029544541965627 n + 291724907535864819881861060224943340480915001584493706550\right) a{\left(n + 65 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(143485613659365441613501675756719266680354267103 n^{5} + 55648288135478451040539740854079617323524880101720 n^{4} + 8421993761093215618470561486188199794459645195005625 n^{3} + 625888242240728056819653863401922148175864884301330540 n^{2} + 22939225459779598195221123222806450662616567389011093092 n + 332690136908119900784264152388917097114811971734885147560\right) a{\left(n + 63 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(318804410891558899938058523298413601645720825147 n^{5} + 130853454831163957298659761880483355459330767682765 n^{4} + 20630369165969132949522979588824697230561893081341755 n^{3} + 1581916330616778963539092017772230665325627018057694255 n^{2} + 59447612492281924653776037897240902493893215375254276678 n + 880202673371725942313438811034963441553570679255754918440\right) a{\left(n + 64 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(460256112180075518941568829219972461256740732617 n^{5} + 163606628008088028098613454620577107587877876483250 n^{4} + 23541498280593584920687717348390500503290880746690295 n^{3} + 1711288672510104587799405489289865780990846710782568130 n^{2} + 62731685264350311762889371012213660855388395798557267748 n + 926004133244816685580894876827843884194093952223427323960\right) a{\left(n + 66 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(518485984448250281841651077324731070032942245812 n^{5} + 671647773374387216531011789632994706375962692335235 n^{4} + 348017202478960830716393920749009452587218536659241430 n^{3} + 90162187273091063271039178327842537503589706217618121225 n^{2} + 11679191210237525519011814539680257933529134376027067545538 n + 605139770111662819990490095826284387334530272713105495956200\right) a{\left(n + 259 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1704783768112609366535525923893027460679647966961 n^{5} + 720781802805942335749063735738969088092888927493159 n^{4} + 118300633816843284181092692271060585060529001600734741 n^{3} + 9501720635548326554731643056539916515583711453416167053 n^{2} + 375470906351009980050809622365381965772046068628581591358 n + 5860907200547043203905968035288033174153986387045076735112\right) a{\left(n + 68 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(1857723238569755225785458846968864152080343762956 n^{5} - 320594193483932475005237690369392938094984091689550 n^{4} - 193663294548761496097442103098442534007839702626618415 n^{3} - 24954237593427523647567412856953397232135961275092860435 n^{2} - 1309819860027289204420028693233197877980990037591712186946 n - 25018520849062373972860782537881016925439593945804849826880\right) a{\left(n + 71 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2260933875984259642901201738301190978352355027344 n^{5} + 2917574606394467600756560917410476268260060550846545 n^{4} + 1505950776267358281454374318328773207368225123151490550 n^{3} + 388655038944180479503978165395866620031078323543796004095 n^{2} + 50151341946299919834361352038570288728717513789034097174186 n + 2588543932999136264963514759734938583769907212440186132002200\right) a{\left(n + 258 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(3120987071275300273483139081390940064870792752813 n^{5} + 1284461453955141838290851974188880824543626349192135 n^{4} + 206319956422328823579452254678433947692280121105685085 n^{3} + 16273778142343409647104294089579442550995397678252043265 n^{2} + 633010527031670210078910293830054211543960180908814496662 n + 9742509009551665906515139372449603047784415159810679819640\right) a{\left(n + 67 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(3190097670145266471436390979142435282067689951787 n^{5} + 1323648277734192979174015314298017359101685817925048 n^{4} + 214936432962549896587667525273859761518187293458862177 n^{3} + 17166356358432545524908449342916054926337071602799829776 n^{2} + 676802153635003447961627683708225513102612249002557974684 n + 10564999965133431338134113636589246247753767500890003728368\right) a{\left(n + 69 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(6864536005081423243132561412549170421548304289438 n^{5} + 2501501660408465067210898815482132054059995586578375 n^{4} + 363845480311404904741610674937745412724635907311827360 n^{3} + 26401570243250556701002691437286453420082251764097625685 n^{2} + 955661853666802538626846712837243211967582307763336012422 n + 13803818453928833992828211278798136708242221785555755491480\right) a{\left(n + 70 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(9415666390924609864090835992448319190092972464191 n^{5} + 12103469925939926774532804272311062918781508500605855 n^{4} + 6223340836110420542920720406344528618960280199677651035 n^{3} + 1599934347562559684131517037476061373994313057898384846785 n^{2} + 205658011948321880638906640919846457076183144103574738855774 n + 10574114286103560584621648323829700357565058185453995378073440\right) a{\left(n + 257 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(13287200356308245556201134533912308309116099912637 n^{5} + 7373143434182887558543110612019620011531292979901674 n^{4} + 1456928376981112947430037590018852423708150258448745559 n^{3} + 135061630340438182488394005288830684455212820484479564118 n^{2} + 6013550631615155133541941971841734967119735087285195423756 n + 104176620915321916069918208563494219660411007614807524736432\right) a{\left(n + 72 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(37483970396657635319117067692333933530754007927607 n^{5} + 47998108924423653251656345973694096762625704476412605 n^{4} + 24584293455321575943613037725136437653004127982746831555 n^{3} + 6295879795575130633974995791038032734111154503773209343355 n^{2} + 806158117326742424449323496353082855858925618374884298973478 n + 41289454466326450230726037631722488955852921005684907453891440\right) a{\left(n + 256 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(142792799274616969779819223896708831715103571098771 n^{5} + 182137454220387498854387042087505349702947401081642945 n^{4} + 92928201943576920484077595239246165118699421284464297555 n^{3} + 23706156968249143993512726119570912675580918200046880550995 n^{2} + 3023710067640083391549628601485641441714777163624812623594494 n + 154267524655581458851056892114556212145640023499439627373784360\right) a{\left(n + 255 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(260533828236706451867322593480864253087940300864187 n^{5} + 331028803502225318652640742486156864169121350301578770 n^{4} + 168237603358382389429954899654682521053307904384097685945 n^{3} + 42750974940581690324355739133396016003362526704252281210870 n^{2} + 5431686037067368046288038459722885700754547423716309270283388 n + 276044431155476840309743611960117316111147183087102132265690880\right) a{\left(n + 254 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(305619419591913867456748646898334077969515882632128 n^{5} + 133601677771533914547515732508178471976831307529448725 n^{4} + 22918946867531297535775708942410065558678623830901889810 n^{3} + 1937179308969357764432982288391938827832183105776148977255 n^{2} + 80922450828380838415060432694772785479399254848095012502362 n + 1339489013428833366527034207932322207233074684182383343453600\right) a{\left(n + 73 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(439416313669566711146828196631375784802050963037946 n^{5} + 168819205772161196452688494905136139745059220206958745 n^{4} + 25970659291157740870430709613776238654391298701074443410 n^{3} + 1999538299455494189625690665556098329283431637514956331875 n^{2} + 77041515250173204035542549637681952691536271064754076954104 n + 1188292966244188313285917503074237588952878881050542515669200\right) a{\left(n + 74 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1788969339864329710456985005091248842794832343158631 n^{5} + 621731103748521330722443666974569289098293153999164775 n^{4} + 85461867470196309902772317666239457053687825377660493835 n^{3} + 5790490490507857901881853936251128815263474492667566370885 n^{2} + 192551921565827628598551774834197304961919611643182981285314 n + 2497458320375622702967443389774748605762904122079381189820080\right) a{\left(n + 75 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1823505962934012902712122474367066103617555471566481 n^{5} + 2307869568860019333939419238201294005977563179450185600 n^{4} + 1168345594680768748665917414340680750694712701281187477435 n^{3} + 295731389177054272423113516267505164613575700611208733776520 n^{2} + 37427393502105165472577317177000945425754821103420387094732124 n + 1894688507902655720145230438910569733489875021755320823608150600\right) a{\left(n + 253 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2022532620829459169061143200932511125795900108265973 n^{5} + 585587158640634085792962111273398764679344890784080075 n^{4} + 59391198905716707430428443450687826622813218884441004165 n^{3} + 2117677819630554179267930803985098093575929963141985380505 n^{2} - 16402423495591952625325283837052859729468874074008777992558 n - 1815260857569719301067774408556774234260080710667092967760200\right) a{\left(n + 76 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2070128792372752422960796923518190817447140186533642 n^{5} + 1119459125406254398568786976087210017472967219968987055 n^{4} + 225709348419081285396122218981526743311260243332481448440 n^{3} + 21780826137589103132485094701637174727637633163139996152405 n^{2} + 1020004190548141230035107717675644258712822744148758202291258 n + 18696575520750345103028044284802938374336032255326803120057160\right) a{\left(n + 77 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(6127635583216008433055251730082314077716475336809357 n^{5} + 7724889601262467281814669222381602919203105749833980900 n^{4} + 3895364070704279909491273059050260087923884986786970897515 n^{3} + 982132979935926226084823454382630002789272887735916916796260 n^{2} + 123810944926742334715429902283274709696577562447483510430369968 n + 6243157710264743162678552238081627970757683952515599853947208800\right) a{\left(n + 252 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(12322972778108095691839139629716142895145197935169883 n^{5} + 15412718137760157747917580764068723125338500087628977052 n^{4} + 7710817982146693676835486558803971294882514844484152315757 n^{3} + 1928808879783433734479896766358486850658453414881733161661848 n^{2} + 241237890050289342002871550696417992923289959857697712670196252 n + 12068671375192041698380361955079255380139589572141812382884808680\right) a{\left(n + 250 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(17639841474003438847624704078978473119650186240724537 n^{5} + 7104521270970241060016540924520294921754490396182122255 n^{4} + 1147007755347650774819267663438193398873324839295823574345 n^{3} + 92780724143600256984469314861429087322846357714876749235905 n^{2} + 3759792593645677182239288096824658018835518483296493647110838 n + 61055776577814234686474922135108326146830230582891255988796200\right) a{\left(n + 78 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(19799743629988509104561351852467830953065255572056056 n^{5} + 24862566171924638805912826148066935434019086101028638825 n^{4} + 12487895340950823518625273427900919489543299443480736677930 n^{3} + 3136169422129735919325926248270964958699585330442517478707815 n^{2} + 393800978429005756795883524356972477240373961635818251494314014 n + 19779308456756684850640885025714740749638222828064762150302180520\right) a{\left(n + 251 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(36995890144769384049654687819243704976046046316974851 n^{5} + 46087506714364841757796360855699447958467183280231695451 n^{4} + 22965241931806287421341448784074988730550935826800781615411 n^{3} + 5721725055885471440264894899920696070987135398047667443930425 n^{2} + 712772855259704515838164635194983077868498648801325656079944870 n + 35516778873111617969463014230447744869978893392333658418584858520\right) a{\left(n + 249 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(41025190116192509396704960412258551338228044361036231 n^{5} + 13189673729206904160230505929175295208978145915794411195 n^{4} + 1527745439195418158050104174045089443363579125143291873635 n^{3} + 69833585981149916025916691804627074655008192027619943269125 n^{2} + 450210924155224908718340245387836379167936384345473360138894 n - 34530786967252065894834384631741437232379972888009930723037360\right) a{\left(n + 81 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(50108217060309995327137174445862096364769002212947678 n^{5} + 19296185560488176384363100023920499850165481904108315575 n^{4} + 2966662616570054345197913776779920369766311477927774855940 n^{3} + 227573999110945796428882123295496547191201975834609785291765 n^{2} + 8708336583078753219866692110511543994399699299549237981239682 n + 132947457126048646645576624445143345440286946783612904825429360\right) a{\left(n + 79 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(53677935535846483847308133715275224883160877151520838 n^{5} + 66600620535973175617154850205411168042209855922831834551 n^{4} + 33053654059245720898183215044989310497718059420296390115612 n^{3} + 8202183668929342912183328277767942535748361455672801659172215 n^{2} + 1017673301963690978399130437011294575818893898481579358742383384 n + 50506375813467011671270669163125567429086160831012950198507530520\right) a{\left(n + 248 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(83028462443850126974716007171784402670204444338345649 n^{5} + 31212172220603065522942620643258185326335767831456367685 n^{4} + 4649968380773427603183339686173149064612193081998159745045 n^{3} + 342461726923383850867117636534813941862933076358399364448995 n^{2} + 12432627653023034293250843876190491796714857561684634866320626 n + 177256044036675453053998867017208707512424259254858873926104920\right) a{\left(n + 80 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(232392497978907245144254580452988815340286536482201129 n^{5} + 97567805825182741036445311024965216483710249899629508900 n^{4} + 16438268652937817556747050546853605568035432095245272978995 n^{3} + 1389158414650483353987245043602087391561785366270716143004760 n^{2} + 58877871520439201794978879672053395313751004109282420455829376 n + 1001138467884939260832218797537954638351618997000970960775379680\right) a{\left(n + 82 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(341669022018828257649703750348388388058207569053950942 n^{5} + 140263539672659471998039069782917651992458922670002088149 n^{4} + 22965212713522363187538199025089387917327841937258751707264 n^{3} + 1873975075965921662553565381245834275224660318730821579255175 n^{2} + 76185349623895512032034016220416408708218594625811800055523990 n + 1233955350565366875731530789550715390160213848796300534929986784\right) a{\left(n + 84 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(426776102943941850481745377589796165265774520168844404 n^{5} + 184536165363604129776926938891857028080182289333236755119 n^{4} + 32071116822519227460825428900465275784414327767806423264918 n^{3} + 2800688083163196488239600301249184927290574756907658744501277 n^{2} + 122901854848451890403749388960531781678893150835465961051963930 n + 2168088084467796198573856534611022143694389643089298422221159520\right) a{\left(n + 86 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(822962011223351446383053216380165177341587768900737491 n^{5} + 1012794449247496126392734537680811713176047936638199144813 n^{4} + 498566278546763174041531687530581399068003689476953631812675 n^{3} + 122714153232058526555168053463700632023382046223497103607545999 n^{2} + 15102076433881338554295338814202801479126571772793009453039395078 n + 743428155055032292330699385036562034734555637873098349071972678504\right) a{\left(n + 246 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(884571729108755875278256718895099231884402154889913173 n^{5} + 362630696477277285447773565643990520603339998036795000345 n^{4} + 59432713494213167251735645266348697376205538729126461431905 n^{3} + 4867712730588887064997157899385342173743982574972510022085715 n^{2} + 199233067880892339796304841688006366556535372991147145277968182 n + 3260044605155961459056791464372633735646908510592902583435651200\right) a{\left(n + 83 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1508604906980624943112603571073274703432985664960561444 n^{5} + 1864213669865301129840808924018725741051625431773805929705 n^{4} + 921457402774641680459905621318573954566170057905948542461030 n^{3} + 227732142577504648676285469925766151563824096046436359643936295 n^{2} + 28141223317429939886362188626225068365131451883061536485151323726 n + 1390981168160318405983238835103221994471285901856381086312103414480\right) a{\left(n + 247 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1532531435433201257602419588197877041547848800080219258 n^{5} + 628638037964249874583418787238972440871441101503090241815 n^{4} + 102360073923675138024623876771920690414160934054572633292540 n^{3} + 8259716494118687143468231252711141992367775394438855918448765 n^{2} + 329747337188030402102260760844154625231055901312439816937284742 n + 5198576754845250652750160824407754262826145654824221024994661680\right) a{\left(n + 85 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(5038296351526882758318983014974551892026123441535199649 n^{5} + 2200592202908238822130842186897430368517423900932898749595 n^{4} + 383876761351970298162448528113242305738904769053303384767425 n^{3} + 33428967499882356825602373459284922272687963623019020473729173 n^{2} + 1453118196055346107883947860359313396987187542923337577999906510 n + 25221945250553684408321555974136003229543835365871159326575861280\right) a{\left(n + 88 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(5456740943386771776747121646544516348987120036939733574 n^{5} + 6687742919147122847110464959408989691723082369185092178195 n^{4} + 3278585235073369143954206645902017895055072689151490689527530 n^{3} + 803644866140152303784586523365578887375851940999139808208614595 n^{2} + 98494676591096900805949939034763842492406132650548595255045183686 n + 4828612099621332849905011507048774494338847142065270858694369619640\right) a{\left(n + 245 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(5474523672492112120000186407439570816311274644039989544 n^{5} + 2436580469041864337558242007260988303930211276287943872585 n^{4} + 432467958937171398909356863126264440383805782383147462197482 n^{3} + 38257680719321283749322849976549105221836291528363559303094027 n^{2} + 1686560509393205242379323902135978459073264468970189509504770538 n + 29634847042145481241369793486063389919418971497307264331900887064\right) a{\left(n + 89 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(9397742011174659265487537331348146862882881899141716198 n^{5} + 11469887220705377847218587283731032996962478712720835183055 n^{4} + 5599586624303014119962879843083787907759120718119822661701560 n^{3} + 1366860211127119364915119936291539011921866086885973346755810325 n^{2} + 166825970911052153124189901200899539852557330787797779014446358262 n + 8144505954042277697214063385343729386598744474632069388864648642840\right) a{\left(n + 244 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(11795435492447108082981943851006640272418590624772921741 n^{5} + 5087090267280270051680507108895801655408730898207048177975 n^{4} + 877370980574581532581054595574173602488218393239175714547585 n^{3} + 75645207890290669295666007386416607010253816114790250273046065 n^{2} + 3260475004160462081547088579259082181966193149961413618747259714 n + 56206901404608799949413916968460098520158616105177541586859432400\right) a{\left(n + 87 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(12622213264861537204379755782181013507121574150717154847 n^{5} + 4391144476762958685118550533867405725655778266679162853200 n^{4} + 549654469988848799798206790113968308346279038223832404280280 n^{3} + 27129006542756994995586141935935326230867708897265923058679210 n^{2} + 191578176721693971502064192726590864274698292768063512161226753 n - 15372602004686807928253395676766336582136620948080260131240040900\right) a{\left(n + 94 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(13222204383367128289805700658044542473534160146029299999 n^{5} + 5667999013972954143909655383164157350985948240532952329255 n^{4} + 976885247146542351987352850595716680914554588132339882938555 n^{3} + 84725722063031734560627929528984929300273338436705317748329425 n^{2} + 3702712815643316645555115360033454414439214961136886516592707006 n + 65313523292668223894884115112173743760956817163979482827313477000\right) a{\left(n + 90 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(35513652810494926824464544423798836822392986663036053762 n^{5} + 43162692809966295184866875941400902356120104985265383491215 n^{4} + 20983758977350101423934030456547593477592162165219384926417260 n^{3} + 5100699649859302044351776947788030857338259862660327295073885285 n^{2} + 619937686404945751230127864384828511241984651028241322000446393878 n + 30138959759514916113936848124409441455766593892920226475697343814400\right) a{\left(n + 243 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(63913525109081083365807327172729032879861247360257865187 n^{5} + 28815238640961375612619703844995206030032874504696888870340 n^{4} + 5195019722851864654909553016554868976053060565077475082126385 n^{3} + 468183963362934229759870219395411913004215537273724350118724730 n^{2} + 21092608647965080526906607574922105997932192848728837709426380418 n + 380049257794317296871239315974872946659125740745181619475645218380\right) a{\left(n + 91 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(99490729766189235629564527794671845157805779477131516191 n^{5} + 9854554855176904565203969450440600634687821740646962729590 n^{4} - 5523396834581577470432083057535199994088267598074924815005415 n^{3} - 1254045180460478781539314916794381485044897556985072711441873300 n^{2} - 95435076341077016213580583035958325859081011691738916014710023346 n - 2517000901706465666257995466665554546076499713748491248965457608680\right) a{\left(n + 98 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(170567178566320366229445754855152917508202448236340640457 n^{5} + 80529530862245475342834023878430630420672773043772938161275 n^{4} + 15175792407654681268627652084449445370230790643275003435537765 n^{3} + 1426944129731348832613616393446763669409590031858245472351837045 n^{2} + 66946647877804882092937076124332584841361517169534491324407095318 n + 1253741614598585255297779224702775329018743974268151683098152356640\right) a{\left(n + 93 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(174608142802985628829007079841299086121643794203904582967 n^{5} + 211324239002892147829379905009775629079558807461792369971245 n^{4} + 102304778870690405993329929010718889490061898695596149863552995 n^{3} + 24763638467105596038310807396826675516258817641163652185820122895 n^{2} + 2997126292590155675076052977118086077119449688180167886689990714178 n + 145096789331543991281400272758641185628912457231542357877886528252400\right) a{\left(n + 242 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(291660775541987711221270522743595315773514347335541337707 n^{5} + 134204357690472393699464915383406241619178074253345897331735 n^{4} + 24673928977480782444411967103561947242992712310564750544027335 n^{3} + 2265696325187294315820710034718795970778305984741180862859976505 n^{2} + 103909139735340366946076713366713266272010795932418559643140149678 n + 1904056110508029935956950824235519150050792934972239877195302458680\right) a{\left(n + 92 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(418792320503980355699162876860128835881327394074328831359 n^{5} + 504728162009540608498469903248011197125143609373758873831905 n^{4} + 243320215811924597178725330431990613183673853299646508989924175 n^{3} + 58650378536687207014675307881417402103069006891644352833101348415 n^{2} + 7068634862491900685217035922272653628141367484288750077048815300866 n + 340770898142826136617986980787175854437318575339392080736273652987720\right) a{\left(n + 241 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(742495898466327087537333873542828343289231311755829646952 n^{5} + 887464138900820920858030719912204189827623693178230974731485 n^{4} + 424296075707450490510905394950390628197606781913500562600505110 n^{3} + 101428219346460632707434706940324352555617536202723893357588108975 n^{2} + 12123284443370834688251168610864727585537115605883218791974100866798 n + 579620327258603399103666588306205372175601812011320963102342976308960\right) a{\left(n + 239 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(796973017393468338661861346283824737717375326657657225218 n^{5} + 396155168274733605226644698826845257952397309747805104558445 n^{4} + 78607976151855578088601983599512258073400847461845330395303175 n^{3} + 7783921863379040597713795469787757310028909192517382342027855750 n^{2} + 384676660046649060712483979488088825677203597558163973037629417192 n + 7590638992547543103639298276660777357553810445316447287229585459410\right) a{\left(n + 97 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(979094018397212817829310232601252853744061402842162379841 n^{5} + 1175086731128677562792550931026897175035739206601666071345580 n^{4} + 564127346178661901501448405816431689158181677622330595272394975 n^{3} + 135411712673786637648451864911474766317947248169436514805713614260 n^{2} + 16252017732014030615294880541222935261819623947630353239600961448344 n + 780226039094607039564378217316113522675053783708057093654341128354800\right) a{\left(n + 240 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1173184801185803682620525731623966292314100465911011468594 n^{5} + 550688114599966334807039197063121475958717420251330237340885 n^{4} + 103343689088971523364377546756456228539699168643527693390757140 n^{3} + 9692268127861872307235071234985918906719031939689543894607019275 n^{2} + 454302845057193471655616701579327246292869942640529176896760627706 n + 8514334738823630529788689347867655075009662381654333933275343492480\right) a{\left(n + 95 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(1367085110243212469384703279625426144683633386921514000942 n^{5} + 659142967588861740135409239512850080436934013454297968368085 n^{4} + 126997666553943003683735911994137524973479361236438255163261720 n^{3} + 12222551525477527012514622001724216146958015984573118759664167565 n^{2} + 587604154509069786337527351020270155309834146811201881874454596808 n + 11289128855428874623408867104119644425071226232377687358216481769720\right) a{\left(n + 96 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(3543026246382971953914389420635447377242301567825406705856 n^{5} + 1097791310924569904672746680528519226020658408924345784379795 n^{4} + 81078531756955601512226230273844049318647023681811817104834310 n^{3} - 6102992235559082147093890017888227407701096334536768865618362495 n^{2} - 1033227650990019269602293270716535754715339599015198481901831258506 n - 35563112327862555530098721830621585343531856328896279823227621945240\right) a{\left(n + 102 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(4919975467164580969934832213925729993580581476601901797053 n^{5} + 5856909068284673265305477486559074872579603723911076661253970 n^{4} + 2788913900303046936214417701303937503087781087336562152215174335 n^{3} + 664007426775302281593245734680087856051203237835578206853960676730 n^{2} + 79046397573821325789502873045643544395896876621649456521167331502992 n + 3764026236482770086175871377436564981135354589975887801184919871972160\right) a{\left(n + 238 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(8605821566340499222171237485407375006812525607683195713125 n^{5} + 10130363142034656473440575705282530558760437645042181183551802 n^{4} + 4769980096967570998151138212626473207825889917853849940457729815 n^{3} + 1122992999203020718909528901535203903893323885286266765319341241662 n^{2} + 132192403467488012978637043453220152133305882679977371740671999553412 n + 6224363440782797531987453228050000826719537041292620973434378717101544\right) a{\left(n + 235 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(8919374143070965614976752634763462509404221170424216749482 n^{5} + 21491966058589107964075747874314994080901556124260423606020577 n^{4} + 14936325441453458823642265361077788207505364725810466575095883796 n^{3} + 4570145264259488087964761619525802535453626117130235145051091058531 n^{2} + 653042154429948919248190405163202241881537092486822271364539574869694 n + 35766765145257737975840888818175373605694006345792150084307207365493992\right) a{\left(n + 227 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(9294483851380534497012444275610443880343986289144235980904 n^{5} + 4531303448146925031655756132662349268707756236629385220845895 n^{4} + 882947782494678677861569998652650279796345814753858911674794190 n^{3} + 85955833555177386556580583475484702913339071167991157514644819425 n^{2} + 4180700787316354264520271508398822258934048675456399472198750046346 n + 81274015140176274462699391699949936035318140900475815898570007659080\right) a{\left(n + 99 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(10520095049387883386457573884429111923529917513608681371029 n^{5} + 12474578254244185662997561436908475684705851210214087870230965 n^{4} + 5916878898873119467301056759191190483782311186519554645214556365 n^{3} + 1403234310661516987597751392676182943793380670915139489725473014335 n^{2} + 166394323917627516389900304402097622838714440956066035488657126576946 n + 7892374727301667435393437964827200960736279436312815104189192233503840\right) a{\left(n + 237 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(20774723160412450497787338039131256201767381085313538077429 n^{5} + 10459376773900206088009481783820084219506975575881439238237050 n^{4} + 2104226687435334588564842966421713895963893965273106445183197335 n^{3} + 211454985288594605077648753311961771306116183991597120828634936030 n^{2} + 10614348009125628210250783144290495565557542804563041004998433130956 n + 212921186779637567676885122337354643132154223684486668637306960013920\right) a{\left(n + 100 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(21703066185223957400690136204574460523986304428235332365871 n^{5} + 25638713919484876855891260405618883338327163152665124826838990 n^{4} + 12115220198844673349565714320573988167647091218072612514711749525 n^{3} + 2862440065307276658840855428155880527139969427093065892624013551430 n^{2} + 338151699408525604837837341370033239373366267535689315546766214850344 n + 15978900189381911030419520496639564686911983090368348396096634588488520\right) a{\left(n + 236 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(22378365672835205220587810283121166955111796466653863529438 n^{5} + 11685155911072127286052683856815854606230849098123843461785495 n^{4} + 2434719079630982430112452768741872259684910556007293984037134580 n^{3} + 253078151841508772181106076294154353858851170198678245379277099625 n^{2} + 13125484428804799954912269849128881787815341676676685534775389982982 n + 271754070211066249632634897590399924216339342185723797915700445852360\right) a{\left(n + 101 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(25133381456364634429047389924442459685574436436422616425446 n^{5} + 1549712136645678646267242843725954268874039992021992773658273 n^{4} - 2352856198000460968357809038456502263590750596285948110122292020 n^{3} - 553517192191078351247886013942678808016141529715133740965699002749 n^{2} - 46509841980545841695760023132124720003537175854862743624472209110998 n - 1372290907530759579757347822634074135609415317907000457237301745353696\right) a{\left(n + 113 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(40800685287206997531024828066612260692544284514847688413543 n^{5} + 47871182219015716202466495612057312401199996956902464488238275 n^{4} + 22466624826193512133852138717415998270507004222855343156300207865 n^{3} + 5271916490034537436939426826994314787797948571284499650438733048835 n^{2} + 618537780637207100954850956341020651658834926673420727550997529736962 n + 29028257042482110063818719879202464922263623750301680774023764406331300\right) a{\left(n + 234 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(54234667355665580852679550371508584473339942904180687888701 n^{5} + 23780158248711844618026789677920168986253678357513762726349800 n^{4} + 3998852312031943052769420516761337901535904580074283354297815215 n^{3} + 314515165387245911283863990341875963227381475202659487523449406000 n^{2} + 10939112413417129670086114830113404113006449752059654332755873342724 n + 111942447991967019714751914196128354063553600750159055173137790267440\right) a{\left(n + 106 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(63003865941595396801733642362937844635895133546738308359739 n^{5} + 31854835055909349238717782322994852862189864499292037087489575 n^{4} + 6435402499002875600378577666468584837054462549034454678193678095 n^{3} + 649338222915143634985219863458530605654355814469192932533394637805 n^{2} + 32722999978592967509627196177603548282220458898109108206779684456066 n + 658875558105457215950416473851940905761562256615471874198894113047160\right) a{\left(n + 103 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(72315877687752963155690743507541241513963193506983332082618 n^{5} + 38919634009826695016073384312852228546733924555246518125830888 n^{4} + 8360903014973806932929901071029325081379590852301756839251253391 n^{3} + 896066158035919731891894766129978910942165407919150667891496502687 n^{2} + 47903173467385363686117107958092317576857900156513806115814623694900 n + 1021741326156749030783390014854248273076873343744403308383251031754932\right) a{\left(n + 111 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(82047266279548826939685686433200894605527937372441610439403 n^{5} + 48621205646136720477315648273839167246503407678659801401878865 n^{4} + 11416391215431231326781724709843336565531254532847920304168038450 n^{3} + 1329646870603621755453888287571891091612703698359908905266485689170 n^{2} + 76903961755329254263349377383853182819153743506018955275012672219922 n + 1768674063720340677204572010017438787967949810678029639748515139643270\right) a{\left(n + 109 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(84391637316801286261685024348193568292752735903166465466221 n^{5} + 90820308225121074867896619451674381549302350620628688426270405 n^{4} + 38988695852214272541843460932854676831295252087159578890769546739 n^{3} + 8343394210019076829890834558217852599575442570402333785699990574835 n^{2} + 889686799288474398440320673542594886530974889732463508678336714276612 n + 37802765758109736770537931468990000426730267850451882201112728110629980\right) a{\left(n + 226 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(93401993939443298920425904773302954461815054140713669548887 n^{5} + 405882987447785592637147102428693510556466629001527543219823181 n^{4} + 200174860230750469998137008338978904274111964138952429719294728971 n^{3} + 38857493979172608133493704572928310544375382332501291740307828699363 n^{2} + 3388089046805880560611062698570168814012473043196985908814034154818462 n + 111087140086340277397564680373425245455861604233490073779961119602070496\right) a{\left(n + 125 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(112019938447788646684210361665654130768288050070627907663843 n^{5} + 61629551756618570814655813641676411201236599209001201401445845 n^{4} + 13512181929547947150309311481166213805079603928272034022596846415 n^{3} + 1476287955362141712433543655444397482546295351928350934312942467275 n^{2} + 80400273438805285503521015104008215440072322302695337282680393582502 n + 1746572940844131396032761002005377979760577879231314427628391799314960\right) a{\left(n + 105 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(124854252587012649011070290867597706121730728886314612013641 n^{5} + 65475439117689577551418894335173230045850817994062229771209480 n^{4} + 13718228930836704833758877549074745616955411507544332443476407155 n^{3} + 1435451614078583273135980533578472946099010272405086309131248986480 n^{2} + 75017846200271757680466241323432681163542918912820722500444190205964 n + 1566495790605770674134938696229047384326300104187743212615612883313680\right) a{\left(n + 104 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(125055335957625565376207493293956966860078716682846901616442 n^{5} + 145950954405738411531257548987993451695198769851388626251440485 n^{4} + 68133022174003239267921385364396208993756358481674826932835318250 n^{3} + 15902464156446851250901527091544433425645998618401505728014432304605 n^{2} + 1855783452734749395733633924756289886728519971047839398390540304120058 n + 86623614347033853635813227437644292182139710234048883411014917045047960\right) a{\left(n + 232 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(147132694579206920080196310094978095930930626384614327430609 n^{5} + 172126990286255733455051271657309373342721769142146762914316745 n^{4} + 80545652712746603122921127498345824873006875847000676439199295325 n^{3} + 18845106245622243675931146894447889006906649721441336725204299888835 n^{2} + 2204542258835729833076744457642309685090905009974440133108964615800566 n + 103155313766614287200062855323361610126158899620730339015472717085508120\right) a{\left(n + 233 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(197786113809149167915734443001595882553428350576819643576369 n^{5} + 230482699843482057898649229200782151410044715377687667833933670 n^{4} + 107426442143660847141157931165917112894228627426443412630226252345 n^{3} + 25033679237379327272861731560214706573854871941228253126465944165160 n^{2} + 2916614910102694117588212589152074469794189022655502219837032624094156 n + 135914154058892540712794353761415651392302639876715145420738668993543480\right) a{\left(n + 231 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(234848898841504030961866044892049052087052556649968652440928 n^{5} + 274747970228713574119811877957969855676146707069912838536575375 n^{4} + 128517599136542470402249488167901960617306433064900675043803687230 n^{3} + 30046189271226039647690467658854915188682301320410306385792680817165 n^{2} + 3510920808222986640175025520834987517105782914124725568959453299564382 n + 164041341360934647047806227216764779761536702654828704119942391381680280\right) a{\left(n + 229 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(278241380444650958164339055476279294598774467454246130418186 n^{5} + 151651214715178812383678314728902369492187264555245199450049545 n^{4} + 33009460005135431487321080063669799056264711330192029736494609260 n^{3} + 3586998923846028867464054829869398189455387151328938898234619496065 n^{2} + 194600183768173715863637517855240270984572267533770332596053513472604 n + 4216775611537729638574975835640063028352687033289743855339151450508920\right) a{\left(n + 108 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(301176632650921911296847398130591687569892592234895059903688 n^{5} + 169918986099078872341188031296253851664950133920281841614361523 n^{4} + 38232653385687165187671340706155414275423454021510049394399651838 n^{3} + 4288810179517882271185945118114513759808717535322659460353836849077 n^{2} + 239864827110555740175514420559843922168987591778079924877615617530386 n + 5350830827603993039861388340392615146410980415318866847739516241992376\right) a{\left(n + 112 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(323626757133360332211251492551023546527107740595054822414574 n^{5} + 181238545517096726855317837525699678168200435061286677659881317 n^{4} + 40712930681411264915824396253280663756358610227820878879775026405 n^{3} + 4587890485316212064128269600014774528549559491994967071109620614765 n^{2} + 259483905433867584126303826845365997737405163037365528592570843439487 n + 5895631770821762529254746239130624928207225366580723270524982447859776\right) a{\left(n + 117 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(349930584978821450672965954988847405186368774984869301480153 n^{5} + 183098251693771114951039342649452319407342418848059507953909245 n^{4} + 38268743861875367171227970891015556295244541588198737872920750745 n^{3} + 3993473627579891366191610647561270880352514896383009744100468759935 n^{2} + 208056113296222868983522597086471264878818665938806695468206999777802 n + 4329092817353393327236565381409051384088922739631126410530472869046000\right) a{\left(n + 107 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(459546907269945751673996130671326930440147152314898496262492 n^{5} + 308586759600162299912849790813541056484816651269164222183503005 n^{4} + 84026305439725057224707663706001593784341042658726416675332901310 n^{3} + 11497730866476448382065172165979250314302497684619466788441633037735 n^{2} + 786139493326836363434956955294026096153715304075522527782541213166058 n + 21413161242839250868015130072346477397591206982015687002258492002755920\right) a{\left(n + 116 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(487667996476574080223921064483119481679245429110673808380788 n^{5} + 240875975764977693302507128341725207256412894189958060954164485 n^{4} + 47040971149678698587301598104041976906395401477171437610867404090 n^{3} + 4527360651506211203327985275546973397434034030369079623641620808735 n^{2} + 213858454669485422402034378622045925338863756846044300442206852860822 n + 3942187976656273218326545970190739581155676607859015959261703638673640\right) a{\left(n + 110 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(568414238350798485150057861499074992431110127335287109255344 n^{5} + 662430370693163065843089032124222493662188060604204490868901475 n^{4} + 308751143029793220764724574439288896307890361244574028834377197450 n^{3} + 71941802134546909542546467389632253900118361786247556491667832915005 n^{2} + 8380303404538687349930333975228089816887135634413790375174580363726926 n + 390422734130016710003865870353802626649238153495578270146119247860571520\right) a{\left(n + 230 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(641532140682246154048930333238273515340064505113431601163733 n^{5} + 764108771281479774558007021776164278294041513854531797860347555 n^{4} + 363413237689610732220175468031544237223024264957894202762772631485 n^{3} + 86282571303420015545566855938812666119400883663506902171043896892905 n^{2} + 10227597925192965715416115882990315756906292772436816042499868406957882 n + 484270827110933750806711076540653530424452240702861286233779828907775680\right) a{\left(n + 228 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(670607485747694713290789615300192619804058197179343820894164 n^{5} - 7738974883161942339970557650232123150140503677653161787905632665 n^{4} - 7021288875429428870798259523926745441107752584521272557683775123430 n^{3} - 2315813144603899855636504805667226050305080458309069036687238224835735 n^{2} - 336938550100964985714482352316566400277479459280200700231954365938250694 n - 18329190198490163306679674788314932384649766535212754453406659577742522800\right) a{\left(n + 216 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(2559566488260236138725480428768769772325365561951821260226297 n^{5} + 2833414763589090729473262334243753174102775457680029209153306508 n^{4} + 1254335754783779016744143602150792144261099100691882949014765822903 n^{3} + 277577611775543469245711855086137117452705494443641527689752232733328 n^{2} + 30705697732111616331265645437839767916270253743941006611958641432526676 n + 1358326481566341898269822516057932217309026502028831087840587437989203072\right) a{\left(n + 224 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2638965378652661577157793977865781908977471339247372486954101 n^{5} + 1383739665723506341436745631399887795639717304580070649223803520 n^{4} + 288450046622240446846652186553296758770057290314359114582721709855 n^{3} + 29852007000598151833317385753496301234343371069219404364180178106260 n^{2} + 1531898191540659904219123841904084360890499471683251644731831045911824 n + 31134048861932055471096500124101975759833531316686061726418442056094560\right) a{\left(n + 114 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(2758296303413688206130808539893047940311616866662180331340978 n^{5} + 3037308194372054357343368310733335328615821337794636890410094765 n^{4} + 1337021353395992275662249769196095867816778294065503510583511814610 n^{3} + 294094308861712462956002862074809247474021863796600370004464388546465 n^{2} + 32323616760922125808867499611436879262717224152032459209978438509399542 n + 1420082182898476895816264909284941375253582471659181340393784623265694620\right) a{\left(n + 225 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(3265008496471595002240662841326088783253884959529230052137644 n^{5} + 1747536445916583117045200721303737634677521237807295537942525245 n^{4} + 371247447398399583346277447108807112667629835739882806866299034310 n^{3} + 39074581945326535784159838851695211923801624434215342793831501153335 n^{2} + 2033794198045668231251988968981402076619449829812455784574416693840546 n + 41771708411788230148625289628422760019606117493135745382152851115522440\right) a{\left(n + 115 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(5032561005169110993559308006968776501300543165307432008688063 n^{5} + 5577931812546934656043203286091700467542120273234366548621666424 n^{4} + 2472693182998289630859466014003716469607548814276683945056488127241 n^{3} + 548010995111532405980948543709272728387377963207870997738184338850156 n^{2} + 60719671651778054484287874468033413765522492455963199508409071367546948 n + 2690789402341853295736784269087114416945224910378355603094902006378072224\right) a{\left(n + 223 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(6564970381006341538356478511219589145790844926582454480348509 n^{5} + 3434915453988130029750361194108909567006893011639028133707570480 n^{4} + 709657411496997212240192475736733181258467998724266002576255848215 n^{3} + 72132213954891411502064572699594804803398844242040803220397690222540 n^{2} + 3590087292946145254447008370800559102728025898683313849673866063373576 n + 69488014679180568700041648698990541850767035840584690790341996281385320\right) a{\left(n + 118 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(7008055653903014623300146748234955333480137507190647671988297 n^{5} + 4828162537844738358911958684569989878329467244713478388888347485 n^{4} + 1308731819978908345319078709935566510271595437117593506883673968925 n^{3} + 175063646605867574461602426238599089931745662727318762997317976616215 n^{2} + 11584393355018111100095993177216833712026799308670121849536020786291398 n + 303914366435773932323826784456242272452671945740711065100058149477932920\right) a{\left(n + 119 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(22373554721159988466893193458660451337165993396325716185927343 n^{5} + 15079088728824285917455163617777089440145310227016276346658838525 n^{4} + 4017067661395676735015539070898365090844426495441079046028398538975 n^{3} + 529828054389499052991148694456733463579928613812676182036507618024075 n^{2} + 34650820902786776006698176960310031498118311390836751670302855920399882 n + 899993019337157020748623086874099856465006112312159117774253906077131760\right) a{\left(n + 122 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(23332195313709377656867528851461675983633089746264246275693016 n^{5} + 25843366922684522321336335494100935287117016965007332854135490515 n^{4} + 11449410438915349782557152609538605840552055293373045072474737913910 n^{3} + 2536107910454465161876880083744601327095091664913138531624742783398985 n^{2} + 280868431387279476882641921771257938352839947196934388749457740263864814 n + 12441671618045922336435259430633424560361586543845530898881274255228026080\right) a{\left(n + 221 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(27763290574364805131409303295604099376535247935364828518729777 n^{5} + 17249105817507101202818343651506875189283819161666014738185425350 n^{4} + 4292756393859876394348075498008167380139329611227785548316076515755 n^{3} + 534809712323854109366502953718112600358988988180445150579004583089510 n^{2} + 33348048217522738642885838869019436805662757453704390885339021430735928 n + 832453902184869210946457877293913664060443059728297970610686679683302440\right) a{\left(n + 120 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(27944939005607506949224394723990997140080877430873385678845993 n^{5} + 16853631568842888807518970867789042678285551598108143410171838260 n^{4} + 4082361173229566771328899036867365924999345346776910610976412040955 n^{3} + 496458339851960816763385025148871728862375405400895144768226023460280 n^{2} + 30311037495558404610060281561435451709684907260322760585126781232895632 n + 743234912145736015461557491586696923004880998495036263919010566654691720\right) a{\left(n + 121 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(44091354043890411139671738196119515474659311406360679856676103 n^{5} + 48862491575745490041670105896903439469179834794430356807435517175 n^{4} + 21658687550401680516807402908895311674286143304914621847003783104375 n^{3} + 4799906474000694778524637621331061438054561621511212056581821768701605 n^{2} + 531835428196867875226197085837332805159667242648900419299503394265905742 n + 23569768937025297251293704326374469952780059320434417720562573394961866040\right) a{\left(n + 222 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(57694469379094988797505300191046950067541644591508437380779023 n^{5} + 38020533413479950140453795624819159145551175169788530688661138185 n^{4} + 10012247600785590717884258639074693842091571055957980244502292256541 n^{3} + 1317046802162894828556070731632631821736771755816591501742073029624825 n^{2} + 86545162054896545672229062626933246587868604640145477563034518231392466 n + 2272798684854930523559479650572149882493013513538379004534714802777456200\right) a{\left(n + 127 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(64448051991145201097716189547925283137210921775310886332342619 n^{5} + 41568343052644170128676737899315597023410358612480972276985685372 n^{4} + 10710938736835835455613453158993733793500611711347589944324988835625 n^{3} + 1378258591143523499700703483033924132456394355484178681651316674642176 n^{2} + 88570029938651309669667127464458901175940230779154009783593551691740640 n + 2274042707328749721643055411276097905005154663268309935076473542238870640\right) a{\left(n + 126 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(71123250767688715248394103683973544127382791936717754251877202 n^{5} + 46074213661077790505038201807127492905989434762770342775960738295 n^{4} + 11936919343318121478146866396098616920841119872090364061832475832130 n^{3} + 1545950107863149355527284164618660063768350922037691293822377295294455 n^{2} + 100078850724967554853752153961679775992167557997380346481433195011465158 n + 2590603566620706116464662915494898798594275648134765561024957680375750660\right) a{\left(n + 124 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(77486508011446731212614754164747343626091759619711382215071701 n^{5} + 663339761279659886906307875242653549918025924869492262419474785915 n^{4} + 494072325151130699991701697041834128043043896888137943912560662034545 n^{3} + 143459752123583665477066504735413449872131079967357005566694070157509845 n^{2} + 18702177003896815497481269578962455390944809286765416550121511442439515594 n + 918075993753210865663651809396563226819760943793946363203756712856138478360\right) a{\left(n + 197 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(100660299273418008977989346331297911723898865677461078238000891 n^{5} + 111469831007851446130788776258525400455929866563126692768615731800 n^{4} + 49373004118686481882168160491692573992996839503459701191493501539225 n^{3} + 10933651153606023021143946689275638103338733023130745433209429738951980 n^{2} + 1210555413782533850026525545775949638285776505027254640078806018117359864 n + 53609069689765748116637056184889975702628449018924398510560053664286226120\right) a{\left(n + 220 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(109263714858244060648958708102212571525041277715872041453977181 n^{5} + 70365838844081585019422717437781638898609249894000983156290373275 n^{4} + 18098943193198508083730972674852608948326647952769569987854136081425 n^{3} + 2324293381319247068369844422760431019517657373292633116865623661960705 n^{2} + 149040199766720892501689640182841945423570968744065302839157219596312854 n + 3817743288407931027181586244198264644645560059404848279731043742296084920\right) a{\left(n + 123 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(109323013075135426915842451157646541424422195410642039378143747 n^{5} + 124222537466575425928338359030232547556342683369496600873737868140 n^{4} + 56357661571249634344177987976234187485463979295279700776234605730065 n^{3} + 12762729116331884236667543730149119208889049336810015001126297030965760 n^{2} + 1442875810702310097340472593777629914924833532878783457859556019506553808 n + 65155280112819020010970865584658838509973496609681530792297431539622868000\right) a{\left(n + 217 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(127682116094558939979883566003128197941489007700236300502170259 n^{5} + 80512263277691872099090366330348877487819746884837814730345374043 n^{4} + 20262703218585267272614897338747733659764981553421396559586908163587 n^{3} + 2543708472653653548578295359423350055656827312086301196429058490472821 n^{2} + 159250598350631212888323746475908220678939859910293504050899320389130922 n + 3976703688899719642879880183676595419851832999060175175611139570876849856\right) a{\left(n + 129 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(128977635229244337971104963886870824287138416345852532401084653 n^{5} + 142978836295281683323610026202513684951440863915255771547297756705 n^{4} + 63391378402806959409940493899960417014656988178947603433354641022505 n^{3} + 14050802323572130605654875602538969535594007111642149932254812605430515 n^{2} + 1556990251408131553398169812095890860494986249311558747179610027900641142 n + 69004244148731762947132061670601990920313377535477925598163072111944816240\right) a{\left(n + 219 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(140212563534736850330271278538138750709238807381104584879116627 n^{5} + 156174486290006486721424614456188173748576954840525050273379496660 n^{4} + 69554283003059429517806353691831473381322577755275528251343856108545 n^{3} + 15482637328398831081117841986683494358727535384117254528128024885763660 n^{2} + 1722580520605139815998557112078725657607288402670128281428172130752133708 n + 76634364054237157460841162064967087926369829549781015463960949927554238280\right) a{\left(n + 218 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{6 \left(157072042133508683491666853517619711736430725989482910659240279 n^{5} + 164991930344192095901885955791992233643503609596976496089264959589 n^{4} + 69323334678394469344914206525837430667191798865655740173831444939447 n^{3} + 14563294774695399594875092092359482412751559129676468707873285619248719 n^{2} + 1529691349587152907309261634778835218857440731032541002630882517944005842 n + 64269138730040040385259858031180658226734717431272055468347816147712398164\right) a{\left(n + 210 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(213220545972740671223976687646517262126526337386491017254798473 n^{5} + 176796586033005247179189700537637921419447798502322468050305713056 n^{4} + 55855681689267395064596560365056708077468864627830993900168254601027 n^{3} + 8140664844474296844127546892589187858283348519458378739699151458474944 n^{2} + 505313752286534207346227036074490822168069936007630026803139433656152908 n + 7637648523890234144121593718285923914433460207403867966677622954082713344\right) a{\left(n + 200 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(237913854604973602498491068674764303549252854580201703240741262 n^{5} + 244196952939962894839895265892346806325567797922752588996282700635 n^{4} + 99998497889950190258784966461321260763135644371913134489686546645140 n^{3} + 20415771405093949042415662691810742659537211394590400717804559584498445 n^{2} + 2077360699408764005178898425587162001286091994356021284495084968353360838 n + 84246051013978302321229770935404501990905144073793355872511935029624974480\right) a{\left(n + 215 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(256628483971089103887479449396645329594549997491009406397178968 n^{5} + 104265213204176129530857394152953126112312796984597106981567000035 n^{4} + 9963509655858333454299120829372439653692747874704038784408944390330 n^{3} - 1052595082395969680400589802022190916470731278154416862910441162735435 n^{2} - 229027072026844849105493373949482473172674627926070324870772830337452338 n - 10345586275685968700289355889541611098663450805091693116304579923171287320\right) a{\left(n + 132 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(329652297293848721616658693689685013750433833901815148983919938 n^{5} + 229440286917677710417555946375871056723597450062190702102933488475 n^{4} + 63591311184545329299270817524719322532559165903507380103714739421340 n^{3} + 8777439456126225232890126984749175213646598075056722319721068193281525 n^{2} + 603616738214210439044190939933944441794534179371592687962576129555407202 n + 16550878290766521582101993818165560321446417839831432174162006998160511160\right) a{\left(n + 128 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(654112137296538535578734137048022247463722087984760278756143132 n^{5} + 689016193785682582163855493167072017461988937278973347791683971515 n^{4} + 290247332347995028708370934962573822501433513707898784720519434731130 n^{3} + 61119013234512937528665341420537797514640390575174877296376121073289795 n^{2} + 6433559456167834613943342739705485601245482075241563848110762262455928468 n + 270819966721350339553028122286270035446488424263767334290786529235966469980\right) a{\left(n + 213 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(656928594040966632488205518742714739856258053040736575934355367 n^{5} + 688734579260878141662856580822761549820111721050643925428861620755 n^{4} + 288660418417013789118551594888607214579702858559047796003699449422375 n^{3} + 60453553848235193981464365969952994052891965714616940419007089643574285 n^{2} + 6326191815287937700482632624813806044985723563098188257936634210826098858 n + 264621062433963689540338230838353583755853828099711961572924575926370910080\right) a{\left(n + 214 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(845686110049847377137303238602978587162978137395823218710800381 n^{5} + 890269456771482244639616315884058813478720894809617395099324646150 n^{4} + 374865600512927607554131863032110357513755427542128054672077203588715 n^{3} + 78919077120753727288244153417923944777268430887901380351786853529860240 n^{2} + 8306941638630742704945940779551595009215186123518617635274518823429456034 n + 349738576625973544407628357316715011020323762923002457170693336242805654950\right) a{\left(n + 211 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(941497857830594940847805428888911946958210541138727898089579906 n^{5} + 613032579751893597890205468402846671097473077740872007785888237973 n^{4} + 157662026373490307364886442608801753169877411758196828843525136854944 n^{3} + 19952195653641108582048083656915870727788878983706598271056800425175159 n^{2} + 1236280297567546034558367754367534707165591468957499975012785337692214442 n + 29774199503020602726633499112905697137966201393730758457166911405478705232\right) a{\left(n + 143 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1088079837484589357809473739572558917349808389122634378698695200 n^{5} + 704470759724579248956959960713583426462286502738551120228950870897 n^{4} + 181776974934576564416000065217730138398386535888884819697073644731654 n^{3} + 23355467034821170116429775215230542691987993823345865690132978111756039 n^{2} + 1493335302663357977984558226583916765975397494083929195697729118202327266 n + 37985863939249084829064758839928593150342033096192155874929737153102672880\right) a{\left(n + 136 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1109666510930299626784407905910296390029081884104280281335750727 n^{5} + 1085337295805265353523532174221572535434191624195749896669040817540 n^{4} + 423520948910153907151541054922071795103218112282231219781683591124605 n^{3} + 82412559311776381235054734413367346433119552317823412726945016470422540 n^{2} + 7995976107834956263477258346735312065534024315734230941787443352422525588 n + 309414046870655900944250101593553435044490769378404108022206466494237450680\right) a{\left(n + 199 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1150556306631703346890599953367549582943846911760049137199072712 n^{5} + 1397542067865936002645397506404104290200319613310804267195512317695 n^{4} + 655859926958965547701107186682678280483850758224629866446140555995510 n^{3} + 150159644453237710267099821566980420029777701766391943068755242970165305 n^{2} + 16877552499674967963878036362604258065850050327973540707599798705442846618 n + 748114847906733974197160320924423529708784998717704989488986912195973910840\right) a{\left(n + 198 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1209893946706748488229610435589874119012552243308474269657445697 n^{5} + 1267163588349449421670927160370710668984244540162281993769373270307 n^{4} + 530854548907237980103205334778072686001893496822721085114541631695393 n^{3} + 111195256025030127020809088682099903755624823747273025093964999150971337 n^{2} + 11645689469334519172403673489879843240287942900648844735597172424389234354 n + 487868464922338430231043412779791009696935297263659314157008694946233437008\right) a{\left(n + 209 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1503466043985021442496445332716721217273789294608349204124171678 n^{5} + 1278993563174478381961509529485460079748990784193085439839690689615 n^{4} + 419422192144844184456602140678613813112278415028897806446649686852840 n^{3} + 64968213653432385734495546804354263356303367532426181597375122650267165 n^{2} + 4556696832578604463075204993321848180817064073552791923933174047858781902 n + 102707804305116758725457505871606131548097555231484702603192572430177555800\right) a{\left(n + 201 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(1816222637702575321419808569808968389068727062347052466512059947 n^{5} + 1198594552131309287351587419547767724877018761531023363590746555400 n^{4} + 316246399957302218165708054069319877380668804644323246342505876354825 n^{3} + 41700388818810886348352446921858608193171367725374734247791141389313260 n^{2} + 2748000891108426748285634139263946147802668224956817345107333431543195048 n + 72401371714814148601562277232241032974519410106420612285287281555187885880\right) a{\left(n + 130 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(1879219883798881227525048801800440643682797073650456756057613711 n^{5} + 1894098663393983805988483205929381333779577092624623339736283893990 n^{4} + 763387946155432809067241042119112444083813562459855665063258479582985 n^{3} + 153783226774478159587787077618011624987355752383952848450111558307394910 n^{2} + 15484117120028942279428930279533601499437545318665884223450450115109681244 n + 623390390147332351378034471459154275036005406873422395603131538105741165760\right) a{\left(n + 204 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(1909230065428393016803782855271992851884543163348927131660513606 n^{5} + 1302822480599416597418349670477137846213463677489294763230918548695 n^{4} + 355179555792691138884077547349151637512657489597295142602199788692360 n^{3} + 48359886821853745463304338507215027621187259443040389368190648475993365 n^{2} + 3288694370973321446165119780617710244618309079770050285463671611172670894 n + 89366912100212231555128969214843829588117932749428961529865812734090155840\right) a{\left(n + 131 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(2084509322155869611271547804829292041710253425506430142207911186 n^{5} + 1373175983605968994456269063568026539381134645901163354286446611815 n^{4} + 361610459481300580006964831104439062464411910701315423634463801238300 n^{3} + 47582299138756201206726369662871071311540200332733209855418076930772855 n^{2} + 3128425706563118170205854492524733829520093198495319458731526257734033124 n + 82216236288024556138570936176449923039872544484066622495041910088689679680\right) a{\left(n + 133 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2221398882197188234994638934290409545787640797901752268134082937 n^{5} + 2341264185152911657529570786406768743193857907831491809602895188510 n^{4} + 986942301729187786173010791223035565942816744534892099665029447816375 n^{3} + 207998622073955009277455809024672158172624651734738994671826343756018610 n^{2} + 21915752246131590293481108024098060817348891179300527965440082395572788488 n + 923569136909399663723812631323046045308867874972179289365426038314129927760\right) a{\left(n + 212 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(2534910466407982847741812556423610883615778797955302082021360823 n^{5} + 2357128774426198252385111387695367618443764011305681741771609033290 n^{4} + 869038151058230780000410935695711422692010265154174753782057470711105 n^{3} + 158492744715785932052946765424325853600930576898224684159189083530780050 n^{2} + 14261338281543530481493257710556617472752172754836713793089000135745782132 n + 504628378841899336656029302738232904881854857268944520346317625832807828720\right) a{\left(n + 202 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(3039234349364287358112798910925593770356445597177481988793667904 n^{5} + 2539759491009599243374765404026656556672282193083087632894113346795 n^{4} + 827208736713149690705410101589207562044988087483651915368211558561410 n^{3} + 132146440879480094970015622318937585134537224472495789876400344084283765 n^{2} + 10399772667911339807857707229581493830373730605165151844990521461452198486 n + 323542016707544201027988301035440440041565456510396202280361294965841501440\right) a{\left(n + 139 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(3881369496205730587730394912733708649019371187547420403989772668 n^{5} + 4006438607823290181746063633232832573420212592976981596171371900735 n^{4} + 1654194703379205072108284666508294373245717558012689749000838344100150 n^{3} + 341490494516715918119976554801464543955685483747454075787918662087410795 n^{2} + 35247934540300822330120185862765952853622082792105583732439278678140781192 n + 1455261224203896832810494898213066934621829646869192339543907421506682127960\right) a{\left(n + 206 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(3996415287147731225826916844185281966943313482743372976952511929 n^{5} + 2862572249825072755336994353936502657127071306719399739514160149045 n^{4} + 818063547646663078182993049227533899701182473275040060117667865698405 n^{3} + 116619976875365849433636321371894699971815562709519786089230447972218835 n^{2} + 8294715174235010917887375925816069632938126816500110917602740312868535786 n + 235526008170809230272781509241312941625113216651560479111336829657354172240\right) a{\left(n + 135 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(4020487596799663187486641264317516066871357862489841182454605283 n^{5} + 3943331343971337528890608602389266952224836609476947129883094157105 n^{4} + 1544402902379712153977612659903795505053256938652733551636630957810255 n^{3} + 301866020155064823994045627653960062812623917047034023363411131543938675 n^{2} + 29440714245543115126792203471438177775280940629244955597319350249032043282 n + 1145951085232289348613025513638248153704458777090504944777128235828110210320\right) a{\left(n + 203 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{4 \left(4095533067552881521365777439399113681839118603580010685511026257 n^{5} + 2796362646727843349227900718009709946193683055951946611195037878070 n^{4} + 763563978645830522617447801710590515673488129712395415053816334377390 n^{3} + 104224995639237226889698142019963604715133965930966673871765090859060040 n^{2} + 7111616380062043890838945380541350536011759617087051344741323779006785313 n + 194052856680342688057660416090882730996879885249630285939685913765509487060\right) a{\left(n + 137 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(4109892667355498259528351130076483456131372180941336526884151292 n^{5} + 3196225959243482289323703999705724824925016356589636880145316613335 n^{4} + 924377167444544519587324392406348026785200751747632211326120094891130 n^{3} + 116276405256448220752105657137858403817923331952038422170933818960697325 n^{2} + 4985463403259350598798266724956371554089777867762564010451844591245495838 n - 57742103720850848713490599377653746813744750810039329222290688516783552600\right) a{\left(n + 196 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(4168316871332816373086662484854592400001479349619525550049311376 n^{5} + 3653708711355571656683572486865635264527095191447571607580231461161 n^{4} + 1258761180706232597944617430792868086983931083407067008902046439624346 n^{3} + 213873171295207749264775337402078913997105349082028210629325836868733287 n^{2} + 17969574487415410727320981762361220684049720680043652334529023905231847334 n + 598450327945728755484344562981592011488151517524457574397054356451493020168\right) a{\left(n + 150 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(6780695420723840017014550426280744962103799874259378540931074936 n^{5} + 4610379128360426854506425508002039946579979502335994113414312775195 n^{4} + 1253615208562000380521125405615014573462167746525752527971223789193430 n^{3} + 170398736976278726667735660899891188874974024440772561255213816169136145 n^{2} + 11578235151992719727952262171358708570771372271401210013138303952364226654 n + 314616625000377561961672052699406574064604926037159610156511441288833611000\right) a{\left(n + 134 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(6992704020589960800368135932847534782596685321498931114640617016 n^{5} + 7153223786473905789806015022073585985684826251807097332113256806685 n^{4} + 2926792178948897952323455115753474295315470601761599538897753152165310 n^{3} + 598719955616359286749149830195496430607977247083410419554797327043539955 n^{2} + 61234426066994998396989701277705388209162469958357656400114770937202557314 n + 2504931559931571139522702243523791856238144065066289689109099844947547189320\right) a{\left(n + 205 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(7164341729956612366447223042455573775292888276879455200672562271 n^{5} + 7475792148380593639920943090149209508841506335161964188983239707240 n^{4} + 3120303891963023136258764571110786339754242306517769839397752077412445 n^{3} + 651186556017898006827024103527978850788110488666782772947476012127956300 n^{2} + 67948975303846175457974920527156264739341339723073355728857056577979152464 n + 2836086232445535808085107978716932610719409525361434505518742289959470336240\right) a{\left(n + 208 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(7801907151493404687307336204585044126239035423719328259957516221 n^{5} + 8103262601350702942010900167262624699407459863793960797249122616310 n^{4} + 3366490148854950199791368365660243788487551172142294877734020926867735 n^{3} + 699298842089585364931423452829622842187559724021049472340987958885577890 n^{2} + 72629993457031834332101955509496125994844883306054149694721367608674756324 n + 3017356499095453929181998342918560400776450778410699777282227519445718951000\right) a{\left(n + 207 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(7839126086829379552093789700482969680273777457563410351492749631 n^{5} + 7497078481784602793072844437470423540254703112675491117465998966650 n^{4} + 2866855461235650028778090318989339483131980262322248232509956234189405 n^{3} + 547915619660515411693530115649622400045963830944588109403796861020489555 n^{2} + 52337167396451568886549316700976776131082487352367419771217465902860766129 n + 1998847102669598815662941190230865236592492614523928603883539856673441793620\right) a{\left(n + 194 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{8 \left(9294028025548681157118633953338111452821134250638357969165281001 n^{5} + 6637102988551827424841272494504887407555189856491923446193289150195 n^{4} + 1892160973196119404215911826025185390480067834017156577607283779827545 n^{3} + 269139205138791648454209999400247019243230398248704072067318155063517785 n^{2} + 19096265798714343352055273775478872938364401201643858730683277936271978274 n + 540582915921910621946293469774385545133524137150096519337500881045345498750\right) a{\left(n + 147 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{6 \left(11009035798935566865353327025527611214755767598654827126012725649 n^{5} + 10474038985565396100314948289796528703018130173787352319888263471585 n^{4} + 3975346859565175503509181839783405935606569922588258874732319993686125 n^{3} + 752583888113363825030184915334254357798966399102429805938489795576697015 n^{2} + 71080642633387489318204888477405483744329213449840455950309723398989646046 n + 2680025596331214797695545998966564621753183845705983803892628433753896228620\right) a{\left(n + 180 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(11492243859835022868074991798633650495062252056333654271275329793 n^{5} + 10828428431111512591606942696662215580856520539363175791297666774875 n^{4} + 4082800919455440978601624374893981051425049469713052798518668002896425 n^{3} + 770008540130132999485242552621950155176748272087703460836536023625499465 n^{2} + 72640627510415742999947880188384989746229015457988616739563037603561950122 n + 2742219566533031588152645630524183064566861621643365235215448370848032082400\right) a{\left(n + 189 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{3 \left(11817837541923097123555738544081879134782980367728902618631609001 n^{5} + 11923230066902620861200702302610091614175104748929581008300247149600 n^{4} + 4777942776775993715314585127254410407157289110051828932779808252710855 n^{3} + 951576023047505663225333251824757268083584878029729342713748685850665760 n^{2} + 94267371824902894848923332385100352689011827791282135548271720639435748824 n + 3718557147493252873422989406117257351071276922945990835005280896818052761560\right) a{\left(n + 184 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(12620322062120925671344161678354490256579643789189251914256878659 n^{5} + 8650524736059121056505167357828605216360768605834295859167997458945 n^{4} + 2369398510262646468123491482505732028869687945428318104431107266719055 n^{3} + 324143468064456044380930144431055403201830702407666850709415346582783735 n^{2} + 22146578755245127674969954096150315420599087416115359663705076844724744566 n + 604504191279878485664786371484411985663108061834792096558591419291495112440\right) a{\left(n + 140 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(14024932673879055285977258393904581898549610168532641002946481413 n^{5} + 12855409114964842123197359209783749743719431076883168873461771440330 n^{4} + 4691262847710327141251389663747125103277374001121543011119685540194775 n^{3} + 851365181797929575663716772591998545582593919427437431279568480647143530 n^{2} + 76768342232946177961668033106374330475072662038280777153592903256726310312 n + 2748487720556693918752324158041704222206415407544724259868555508640367324680\right) a{\left(n + 195 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(17984481959254724979623954022159307074410677281441879275764378571 n^{5} + 17455094534207984820910958359320485449078022051718793124578529999505 n^{4} + 6776128051028181349953062695865500751802142717528044807867519945083115 n^{3} + 1315183373338731996781775553119919464428616811042570209565771450292717675 n^{2} + 127625213884444370042738350641949773360508322136123639649065239296979089094 n + 4953615192247976698030071318913197885550443329184007646618705441871885728120\right) a{\left(n + 193 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(18322955451733460921523940405914637927002111426145227988693263387 n^{5} + 12864096106923678718239236081137634025418075537754942830794270450575 n^{4} + 3612307562641899008853245192093570909708551281968907659793191227184255 n^{3} + 507130553563922996148866438456186446855029797672133185433611021495172685 n^{2} + 35594467634818457298256099101910985357434395797309520159663999304702046098 n + 999219924363031647456990152844906410083971266970894850598404316920340043960\right) a{\left(n + 138 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(23241900709262323042938235384578343944829465521570418781836416596 n^{5} + 16406813618186791456015135579619976057491107223307949728487541081515 n^{4} + 4632461493864943644919265839442177904179804631011591670957663732287400 n^{3} + 653945375030282066685083196103811919022812074889329884881146711237909105 n^{2} + 46154096617043094025854303071206891117449612289376963377378700685118233844 n + 1302882187541874272060569976314812211913432129667544143044286114985584228360\right) a{\left(n + 141 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(35874647908898058884666157310336537195183306580004116903333649011 n^{5} + 26079136662364966093041079488013778046646280433224530137509341130510 n^{4} + 7582739651611879237414350414380838995435814688896293395098261515545845 n^{3} + 1102281000509140133239684878187877004163216608304837019953871108531695450 n^{2} + 80110218032465970156527234606001102047360579600221225583580211571595436144 n + 2328624064609621260838888088886512930695860230160059609019151323427166584080\right) a{\left(n + 142 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(38620031439424782986995209559263128446023581592159668888711476598 n^{5} + 37876076280459766637823824264971100014231105505245385429806503031245 n^{4} + 14842842651956548419846464796741063492664859513189066615434725307531800 n^{3} + 2905390463501666515832434379530007179908617120610179663593899838254791415 n^{2} + 284086471064328770299947247286114037571185381442093467905859581450944224862 n + 11101112278709989516055402061403247920854163067028194497896085450581238965240\right) a{\left(n + 190 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(46374895277593642102041903014860231089878425116288238108841814336 n^{5} + 35241377994027663166039925493826744124580908633812093817471758504035 n^{4} + 10706034995307343358612163310711161949738957840673085255444042982433330 n^{3} + 1625261060094515348637443510789000527296157739046294028512389138747296245 n^{2} + 123293286415886425818203167425988684919540492498719851740546229393522893494 n + 3739132956099901529819525041245308869249998873397887776553500509588472180880\right) a{\left(n + 146 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(48184421120404251602198762217132819247253665661453399984194122366 n^{5} + 41272326656148044106334524643594842655753273177456857125626220498959 n^{4} + 14132868965950976793129167939380639054912604621165268556339460817485436 n^{3} + 2418424724699739758031513522366765338426272491005826866883576320134940165 n^{2} + 206807878065736707482016350183384028451479603589740271797343287109785566490 n + 7070088760630071389557339217650159390034219418385854102054507816527257302360\right) a{\left(n + 170 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(48760162194906542902726343969281595797172879184346565016611463407 n^{5} + 42390450499451100666909453949345938874285012350657070133704237909011 n^{4} + 14738365061298050724799196998871729359422533159962138788222910778541135 n^{3} + 2561676237039573073531472012273000542452149685892438995977332961498256801 n^{2} + 222586096701130928534775457199683787449472563936032805284180025305269216278 n + 7735098689652273124527016653990104998713405158178367271769171812571626235264\right) a{\left(n + 173 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(52841023717048446833571081416665282405951819458072146202713312207 n^{5} + 46388089562975199859719988726799593140095408757214255802184815989855 n^{4} + 16275311798417169657031335775829659039672995643497048695529814540355995 n^{3} + 2852715637514386903270408153876375806748965052448810322098825853215132285 n^{2} + 249805968480456585703964798795574300874002097115066221053264557032316795538 n + 8743016700469885194851402092383229776124848346490634671838270728225415148080\right) a{\left(n + 177 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(59516928559525508985519624968868194945017653617922613393827105310 n^{5} + 47395663852060498816360737766451236296438574192509511367400686856629 n^{4} + 15081455385127835778291604456574011559050757221714810230625660351672552 n^{3} + 2396851854221882528899987913113623029271568715011428886731111380928968815 n^{2} + 190242162587067034076350779939652405704317094705434832016250377720017011638 n + 6032559777036387880099080421251486511815063637783373159416778569614616523472\right) a{\left(n + 162 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(66036761306342216459233498587986355100983637029810835245111762141 n^{5} + 46730879233066586563182978551738616343420006328547009589158035808010 n^{4} + 13088378352334283642301714063140829159957222704123380583863078272034815 n^{3} + 1809041773995688962657003057467416587036415309085591986683390508766592230 n^{2} + 122955627874527169260838428203743000974712421045056212197141049179713105764 n + 3270337172461968620036882488440815424582216587906605885854049353261583063320\right) a{\left(n + 154 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(72961643280668938655186654954705822746753605170365676444199501091 n^{5} + 71135342558819352401575131224355201328531030970288625784240651549055 n^{4} + 27736395941285885143493486793615159540289595581659454324752529354937835 n^{3} + 5406295969516436359974369557313347745680840404288287273255796935212698705 n^{2} + 526788315256510261980830150059913344471750748186864281338186225572463389234 n + 20528170503316302724412265944928697090961678285815831745096016899867635984560\right) a{\left(n + 192 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(73050925871750906525963330812099622766484928635579749540665742006 n^{5} + 71276387954161686201974476943704098105145754522133424429744539871515 n^{4} + 27806522902742933941843841437661170336328015838879904487833570448681060 n^{3} + 5421808213935088266368454858045666642273130491936615064789860703184301765 n^{2} + 528376123251629743795680181332548034238503764815513599038432636382127704574 n + 20589158328104072292357353007880787420993998865055079515554422070088193371840\right) a{\left(n + 191 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(77197801877433238495771204822744582031159604676845824359301392617 n^{5} + 55033504517988874671488211641217052774916123308764631449761424269530 n^{4} + 15685324461849464431524416440859117481493592809513791377799990133144375 n^{3} + 2234102922565156961284128260988203172672610180431156536238802324037460770 n^{2} + 159017392285231095915883204988267398956502305262666890871526724879607092068 n + 4524758970527123737015692114844495536490125264331432955860881742902340962840\right) a{\left(n + 144 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{4 \left(88182800722681569805485909969048841005994660264711652818562854077 n^{5} + 67040091145694079484010405858680937885641952392364301073372465005500 n^{4} + 20380846854145029848745772121701920148563110333611589346274453767441790 n^{3} + 3097088855773124964295276530574699388137588989327276280524801058493550445 n^{2} + 235247831399685016319642769789087607009769632842061675449085683864198635858 n + 7145368686196960681956994667861378778594836132941312058384251130491847681340\right) a{\left(n + 152 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(101465184059474306152437809054242493003105410425630371016067098841 n^{5} + 73973439244090784626886954007628212372720175853545006283029684115175 n^{4} + 21571943463223939924816160258263508079169146678823240474368626273547425 n^{3} + 3145317852617691580577446276007469135733920214543345625023471346514528885 n^{2} + 229297165781532042641460490596956547730502730600206605201388414913731611554 n + 6686190741199799549103771908432609657844714214913038858769223275580258743280\right) a{\left(n + 145 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(109229120861567157378880563997971812138758539435788502794999311741 n^{5} + 99222608921267388948473374512534659858728908003447920730185714223515 n^{4} + 36054594319592055138471217610909839153170709806946074294217866528877725 n^{3} + 6550773775783717243170744086957971479439160248976463499670771044602357685 n^{2} + 595114879521757429130269812634189899181617644723006563079055057432772167494 n + 21625660895834402894042437482334647584434027632035176912491274343049834193680\right) a{\left(n + 181 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(115190032425409858008796953372087528141385440334702205990769423627 n^{5} + 105880698377581488703340724394014466899898252008672537554509859858300 n^{4} + 38924451512504557479704170507489597716485358951881405164493435059823325 n^{3} + 7153834304020645520303081589052117541449119501058712216042809783976839720 n^{2} + 657298526868219781953912112371897548249270857702094330170865962556497117788 n + 24153521037039660835079889274241605695730852535406718484307039992542419930120\right) a{\left(n + 185 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(127793122391965860199454712992434981975216254515036917203038080789 n^{5} + 121384074347746463383512928207130906776281472274134041431759176448785 n^{4} + 46121853809547783331520099718740725558414766348463495108952384580100785 n^{3} + 8762947311033896767162305369295257923181397865331465130850296267929370775 n^{2} + 832510377010973817074365285865512987189465367507927408705109703643650597626 n + 31638271651755915407353466802021326776101698881320117842771730812125979575320\right) a{\left(n + 188 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{6 \left(139985026039616672346051128779841061849094061863861245958629067906 n^{5} + 117267142214872607735739830550096263158298158253781402183395252664305 n^{4} + 39283552783569743561640400924740846510923726896058110561595444745146700 n^{3} + 6578022702097711669054503916578360936390980221695637359860181814447561685 n^{2} + 550592901150210481847016057587076429657946129376020108823762567458988377724 n + 18429214160526826558566245141627589593610613212709531611171355213471915227280\right) a{\left(n + 167 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(153937496779019716268896012338475455030005654712481111533657007546 n^{5} + 141226536300120363557458330427367002023338022320689488692748955492205 n^{4} + 51791939354497182922264256527448967878022129198287574670043833114980960 n^{3} + 9490729385307303165367615352839986197477289909795016218337172552189380995 n^{2} + 869031850862137427292598859188636201135591860034317417668181877862498180294 n + 31810259229336724790489872532559194863213057196014175076714276993557920209960\right) a{\left(n + 178 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(168660174328420081553841376083886152284166357995344035720667743446 n^{5} + 149914482340137318843282112277663031632044075810494354094531223306185 n^{4} + 53271905431061247641263004548399480199750061252099442611261284142211080 n^{3} + 9460000330291533101855744365255908513702357474068857197758090726811145715 n^{2} + 839511602172664560793136986868398286281115793029811751769712551836839600574 n + 29785090161514768358360111621537339547555111805235478569987690450412580547640\right) a{\left(n + 174 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(170964461104874140540092974951827180779285864101704542962317211755 n^{5} + 144401963004167103896850850475579807279737210298956880753380564397248 n^{4} + 48777531003272829076667217673964995961637575796776861446519420565490741 n^{3} + 8236775331966445099432500045866984361963293360215990838967524360699745908 n^{2} + 695322828994929999970155802236540320461233661621048259257404743403944262956 n + 23474628874735121560588010609135925148961746265305553284691399257958727090864\right) a{\left(n + 168 \right)}}{1155898679275 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(171616092221798803681797751139009407045499064212921064784025835669 n^{5} + 161547387820524802501104476132431175613493455206637527970014790028835 n^{4} + 60793234688795830454867094128234339951781079860817093021891581044563065 n^{3} + 11432525934385381658301051037708470969037884600124070334168033799735536625 n^{2} + 1074406172000711707250340850577104745444988889832686525480882444604976575286 n + 40367456656499649971204996128433569053916203739285813547994227408861715015960\right) a{\left(n + 183 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(177303159895289026775522696348107569918110188887787803976839195103 n^{5} + 133431264110514117985414300637098013013645382776000236021317052798845 n^{4} + 40164324563296861873531898551662562328964118219128611253163211393703755 n^{3} + 6044665093931733607344379772413907871027294773668719509002132777626109595 n^{2} + 454831052269320355354863964013500575013470763157578148672876900165106471342 n + 13688669917378980272482748994307363366901584537130668204152444495871076340120\right) a{\left(n + 149 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(181974208123434990167486393481166343096678289357630852178966646878 n^{5} + 134180825594418390728582199965634955653810631339168273110912352942775 n^{4} + 39562327769866315548197217593149257825319297816978961611445124498696100 n^{3} + 5830266984680279982873359409366153338097300012157381982633762258861419525 n^{2} + 429441908490366136786555320383893293558466653130119664585070686123943402242 n + 12647758837047319448902781957386073681149913791387988248095910596896818221480\right) a{\left(n + 148 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(191618429631486353587220852608066436633808079917306076224483474997 n^{5} + 176913655246054543381616301632726774710346557191532757089259431317190 n^{4} + 65284282239070187922350057595807673128802898587228031998002318098133435 n^{3} + 12036612884613252274745705702533282668726609122316709609009532555848668050 n^{2} + 1108823340597947735227961920051736260770030667532367374983536747604049547128 n + 40830604386880770750485892223214935745543630993425382441447843282511764352240\right) a{\left(n + 179 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(196078810001674200177784955193552748700988415315973050777538701186 n^{5} + 149913551498271841479747204334979842436117158872657928183425542888865 n^{4} + 45746818485120698401108075231705001186226637585171379679750516437516740 n^{3} + 6963287765036451343970046244406607863129977583836370358642680635137798555 n^{2} + 528568785531662482800391880177256373863024953924782338002676843182804421814 n + 16002815750750698546645277329871419524539627327322207470553276599281725813000\right) a{\left(n + 158 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(199788325186309847729976204612484088732688539703301927049284652002 n^{5} + 188798934788636209987875856683889633575347843014027832021278316354475 n^{4} + 71365975646926064003672327976285643290804161052587604946739097055011280 n^{3} + 13488171431786433026663065262803044131460036317649484130833515340526244945 n^{2} + 1274627097056276969508905740787627183271430304201005080154481652052120271338 n + 48180293843087475409096158933581509060287656892081448711286048734901918544480\right) a{\left(n + 187 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(203078147905487517708686176441326826210395235301632254433833515227 n^{5} + 190227994158386723623410786929727700959195617759115427434821617767185 n^{4} + 71276725752177752343822828000091529634596219095054268120970607516123155 n^{3} + 13353378257211323161480741784581717159325827333696325871892178042956350535 n^{2} + 1250842666058117762359123595012458979072804713735874743358349370782478514498 n + 46867348355914828736341534817474628298378312375354569635913247062081458808480\right) a{\left(n + 186 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(207489536489077870510475394263980423585767830719100645892317371067 n^{5} + 192372426865662369837449943677118944747670626472081133880564074329220 n^{4} + 71327895475686505038747164359599917677476468563874976083363072534147385 n^{3} + 13220713396160659725554098787976187242101066869480382142280036300782517280 n^{2} + 1224977903382507342002969572980409889713518571860100569273219999865703463168 n + 45390874154539933862540777124899173262482892826822461907075816157158228277320\right) a{\left(n + 182 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(211162644596109510491195429146148251738582401184425484105184017564 n^{5} + 157226640435953661738702606046068461346157074122283346718578087321315 n^{4} + 46785187927515191133734396933721108020666209229960529796256773392364370 n^{3} + 6954309388913802715145302382354777660025132326999075261513174613846112205 n^{2} + 516346590423552564525089469360083297303931957294983948233344290831247671706 n + 15319213070525575590548596988843061832842660810192962997477953076694844706840\right) a{\left(n + 151 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{2 \left(217723781305885831514100397891507831676948355778831887157287155413 n^{5} + 167445948904976098962586109218170943400441538585289413911810949153910 n^{4} + 51483255500896216530837271198167312191130097481225527632543252175701725 n^{3} + 7910097078953379562992877516716022023430170601389533982605043834795455600 n^{2} + 607314070614024134384263786911877378654920506522880087748098060203864429652 n + 18639797268575574330418045936092351282161868455644555954102542974546274492360\right) a{\left(n + 155 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{3 \left(231129256851231162101350574194618546883251537684044489321521380959 n^{5} + 182993320974760568384839598693181318301744254445175518648420830301090 n^{4} + 57930878973481198861823559892752360633412763693433909663667973562773925 n^{3} + 9166125028333119779743540323048764828565346002879496469152277758082083950 n^{2} + 724866741193546473316442569347084196079059438766590000335502711257718204956 n + 22919914469670651307184366870185689314039195641504846882464442889151091176280\right) a{\left(n + 159 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(259388355842633308923761003370221234567022769870134133460429336729 n^{5} + 201304701646608969595718602952048306141513373185780614797975890347605 n^{4} + 62483286199630298022774648173940276866164564046066444309965021214004665 n^{3} + 9695906524951079975742404918605514312415128547204888017112486368611897155 n^{2} + 752186842396875790800250810007572904385236775950041518510039990746343063806 n + 23338017894678438808141313840847052246816713169463088509605473733068441704400\right) a{\left(n + 153 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{2 \left(289404231186149742627637746650261568523528824473573573329801400193 n^{5} + 226257783800278218659183381541222757082842528697243539278663531158305 n^{4} + 70738912484861044555798294090071897137159037441368198155523798743034475 n^{3} + 11055481584914063067532437878766541068609777627023555703327022900252166915 n^{2} + 863693243381529159667604982798839409629524448007142579154008241493566728692 n + 26983108004614510167894379616567639254926011464910198271518825787142110132360\right) a{\left(n + 156 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(295149873871621368525746170769824968118658135682181360153366882919 n^{5} + 263424520108360222952272246795144038547789797510082201105706981284310 n^{4} + 94011336196942563808757059007106299150350942027323552332113123225459885 n^{3} + 16769913311403293767231102601625646847787177237304120941542321585686311730 n^{2} + 1495250024253180357479322548827688159658360154659271490212361234537986121196 n + 53311978961291263951777310173950712015568629382121149439953506378253149044120\right) a{\left(n + 176 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(307526958628289367737415204003053100434994814596361218784271216522 n^{5} + 253991982792226095083692755260847907971015813452425737833176992215375 n^{4} + 83854733075033807330530534535459515386814518612039301447525044907472480 n^{3} + 13832791749318415523605154294800712978820961357870711059924168900828260305 n^{2} + 1140144884007683958652872514673647724471572819553324480250450150585060807638 n + 37563040608402953300692691815087739362670427899328031645932777808921581010080\right) a{\left(n + 166 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(336426759068374115897007310477322717344312679808013697643035569538 n^{5} + 268473075256989877171729911300189228026375897685121154223854972666315 n^{4} + 85683511848841030431706674174590389254351537626118943328010545280640760 n^{3} + 13670651092182091562622612410873876815547849045422432270306856338947362485 n^{2} + 1090374488017620968460866426367987235223486476744808484100514313354831106862 n + 34781302449869344525066108620609917353556114144876697975872023388037632713080\right) a{\left(n + 157 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(373652780536021001908280747760634224459582225011602534118017641271 n^{5} + 332190347568002845630148301748264865661999509600646976191451962949265 n^{4} + 118089187227423768085513303026712209298080655441474075676643288907759935 n^{3} + 20982242486220917644646070897772149252756975181175906871205889599772558095 n^{2} + 1863444157051428078210051434763471007153141691063578096055935025540826611114 n + 66175528401138941600962033852745950069698156793540458734569222950157195848720\right) a{\left(n + 175 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(385151809441907921213107849773925549589065510708379997239771062631 n^{5} + 327730633695074558487580912366062245094981559090221963240132620590940 n^{4} + 111545465012999184272549022082791215935996963548498599863544608780657785 n^{3} + 18982270378525431952392716638009909129884318443882999434488097300319057440 n^{2} + 1615129246627901832448728164075821031732357798835918745171232779447098249604 n + 54969374419273780936880827982239656654195713876788589440829134059781864690320\right) a{\left(n + 169 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(402773645319496544781839691097855369615887570115089532741977205794 n^{5} + 328965396943628743875478813683451376727162732160024342334277284444535 n^{4} + 107462659215967353128351359598131998467259865999645229187389105706484660 n^{3} + 17550596089552448557338284272245313347502241364959560188332983533468165825 n^{2} + 1433018646322372566702516880367088970402604331564437379447226974027186515666 n + 46797890710281600413149940714977972048170699097664855445877874888572470712560\right) a{\left(n + 161 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(433941526501140778778839844544577922364007750827812639206346625497 n^{5} + 361654634780602796483654320691450104069482800812174118671136103766290 n^{4} + 120563822597945477848430048707166017928761103647286511062046543034857735 n^{3} + 20095985345263931682385847988525405433146927040586408891910098769442414170 n^{2} + 1674827519276764868920237517565342715234926881156082974199096822274567926268 n + 55832685534399687458809840534751022883250970942314822409659897400687191555160\right) a{\left(n + 165 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(605573751693964382480706674836734147372091261119793659112629145739 n^{5} + 525265884216030600715444233778184478466830104781589641889191728679675 n^{4} + 182197232159966204370110683397827662679687267900948015972077557974598875 n^{3} + 31591329495756918616932822903314745203088777592038918559093978778355418365 n^{2} + 2738171069073151734262874783689719840361338663201084755645134309820020525986 n + 94910155338122888007057704883909473480043044462698140336545055413078829129840\right) a{\left(n + 172 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(636130597002685642559554225494472737882891867269556099163108860952 n^{5} + 548529923928306611419312687997756633350374350957828079235350919709305 n^{4} + 189138939601919041485586468048926207766642364460917767999818846076086170 n^{3} + 32598724964750086091729074621622541229994156801688350112291165843826608815 n^{2} + 2808417206840993242502210457085931133875454789323595438279225739850442511638 n + 96751154346611513533444058863694723279020391439977665683694992772881013434120\right) a{\left(n + 171 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(804311032483390509843110244357011920444540943997581210529082681823 n^{5} + 645427138010907435715047489236352402280487429703059515734533946037740 n^{4} + 207131444333788678390345476899776083418420215614795252422629724152779645 n^{3} + 33229939918982204612018763162668072735877779593749604749143457748567279560 n^{2} + 2664997581102370285165032858524649337225057718344124843923164968936469275192 n + 85474542444337425094195562670105671747819079668910628936565094396754731329040\right) a{\left(n + 160 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} + \frac{\left(863404269888672445640057854989709781131584401188496478257128122796 n^{5} + 703053464317931789750339889142499816094338277548007398608767293061055 n^{4} + 228925309533031824625573602348332998170501592072607419662891551944992050 n^{3} + 37259685639291159264383133601579486286509434738927691681867881827359422005 n^{2} + 3031258513780251498269079869283236038028229955413789987794471772286731867654 n + 98612856738408325241122633927125549011471735125086986627470195622647719553560\right) a{\left(n + 163 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)} - \frac{\left(926022805294516616859745336377953355310741142011981698714191972763 n^{5} + 762191346149900905380348046801355718571526531540803566945560731779715 n^{4} + 250895934394203060348127014769959260374068447418322363089109605820591315 n^{3} + 41287680362849753685116351140495262764170920223147825843166929317303741105 n^{2} + 3396600870776379992057735906462322832153098021500463504591687710752712637862 n + 111752075572370593981974823673945438383561915372263438682353096895895389566360\right) a{\left(n + 164 \right)}}{5779493396375 \left(n + 288\right) \left(n + 289\right) \left(n + 290\right) \left(n + 291\right) \left(n + 293\right)}, \quad n \geq 290\)

This specification was found using the strategy pack "Point And Col Placements Req Corrob" and has 358 rules.

Finding the specification took 13470 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 358 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{357}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{12}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= 0\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{325}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{11}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= \frac{F_{36}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{36}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{37}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{68}\! \left(x \right)+F_{73}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{11}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{11}\! \left(x \right) F_{33}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{11}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{11}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= \frac{F_{53}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{11}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{11}\! \left(x \right) F_{61}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{11}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= 2 F_{9}\! \left(x \right)+F_{70}\! \left(x \right)+F_{71}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{11}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{11}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{11}\! \left(x \right) F_{47}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{11}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{11}\! \left(x \right) F_{43}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{11}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{308}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{0}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{129}\! \left(x \right)+F_{306}\! \left(x \right)+F_{4}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{11}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{41}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{11}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{47} \left(x \right)^{2} F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{41}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{11}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{111}\! \left(x \right) &= 2 F_{9}\! \left(x \right)+F_{112}\! \left(x \right)+F_{114}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{11}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{11}\! \left(x \right) F_{111}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= 2 F_{9}\! \left(x \right)+F_{120}\! \left(x \right)+F_{122}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{11}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{11}\! \left(x \right) F_{119}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{11}\! \left(x \right) F_{126}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{47} \left(x \right)^{2} F_{15}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{11}\! \left(x \right) F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{254}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{133}\! \left(x \right) &= -F_{180}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= -F_{112}\! \left(x \right)-F_{114}\! \left(x \right)-F_{175}\! \left(x \right)-F_{9}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= \frac{F_{143}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= -F_{166}\! \left(x \right)-F_{167}\! \left(x \right)+F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= \frac{F_{146}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{11}\! \left(x \right) F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{161}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{159}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{11}\! \left(x \right) F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{156}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{11}\! \left(x \right) F_{56}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{11}\! \left(x \right) F_{163}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{163}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{47}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= \frac{F_{170}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= -F_{166}\! \left(x \right)+F_{172}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{0}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{11}\! \left(x \right) F_{145}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{15}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{11}\! \left(x \right) F_{184}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{216}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{186}\! \left(x \right) &= -F_{204}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= \frac{F_{188}\! \left(x \right)}{F_{11}\! \left(x \right) F_{47}\! \left(x \right)}\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= -F_{178}\! \left(x \right)-F_{197}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= \frac{F_{191}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{193}\! \left(x \right) &= \frac{F_{194}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{196}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{11}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{11}\! \left(x \right) F_{199}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{202}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{11}\! \left(x \right) F_{126}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{206}\! \left(x \right)\\ F_{206}\! \left(x \right) &= -F_{213}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{11}\! \left(x \right) F_{210}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{11}\! \left(x \right) F_{33}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{216}\! \left(x \right) &= \frac{F_{217}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= 2 F_{9}\! \left(x \right)+F_{220}\! \left(x \right)+F_{221}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{11}\! \left(x \right) F_{137}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= -F_{237}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{226}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{47} \left(x \right)^{2} F_{4}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{11}\! \left(x \right) F_{199}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{11}\! \left(x \right) F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)+F_{234}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{232}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{11}\! \left(x \right) F_{177}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= -F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{226}\! \left(x \right)+F_{238}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{11}\! \left(x \right) F_{236}\! \left(x \right)\\ F_{240}\! \left(x \right) &= \frac{F_{241}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= -F_{243}\! \left(x \right)-F_{250}\! \left(x \right)-F_{9}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{11}\! \left(x \right) F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)+F_{247}\! \left(x \right)+F_{248}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{11}\! \left(x \right) F_{111}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{11}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{122}\! \left(x \right)+F_{256}\! \left(x \right)+F_{296}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{11}\! \left(x \right) F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= -F_{259}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= -F_{295}\! \left(x \right)+F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= \frac{F_{262}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= -F_{83}\! \left(x \right)-F_{9}\! \left(x \right)+F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= -F_{275}\! \left(x \right)+F_{265}\! \left(x \right)\\ F_{265}\! \left(x \right) &= \frac{F_{266}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{266}\! \left(x \right) &= -F_{2}\! \left(x \right)-F_{269}\! \left(x \right)-F_{272}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{11}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{11}\! \left(x \right) F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{11}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{11}\! \left(x \right) F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{108}\! \left(x \right) F_{11}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{276}\! \left(x \right)+F_{280}\! \left(x \right)+F_{284}\! \left(x \right)+F_{290}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{11}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{2}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{11}\! \left(x \right) F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{2}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{11}\! \left(x \right) F_{285}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{287}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{2}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{288}\! \left(x \right)\\ F_{288}\! \left(x \right) &= -F_{289}\! \left(x \right)+F_{275}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{2}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{11}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{2}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{293}\! \left(x \right) &= -F_{294}\! \left(x \right)+F_{229}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{0}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{295}\! \left(x \right) &= -F_{133}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{11}\! \left(x \right) F_{298}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{299}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{11}\! \left(x \right) F_{300}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{300}\! \left(x \right) &= -F_{304}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{2}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{0} \left(x \right)^{3} F_{236}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{11}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{308}\! \left(x \right) &= \frac{F_{309}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)\\ F_{310}\! \left(x \right) &= -F_{322}\! \left(x \right)-F_{74}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{11}\! \left(x \right) F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{314}\! \left(x \right)+F_{316}\! \left(x \right)+F_{318}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{11}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{142}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{11}\! \left(x \right) F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= \frac{F_{321}\! \left(x \right)}{F_{11}\! \left(x \right)}\\ F_{321}\! \left(x \right) &= F_{255}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{11}\! \left(x \right) F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{254}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{11}\! \left(x \right) F_{131}\! \left(x \right)\\ F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{11}\! \left(x \right) F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{2}\! \left(x \right) F_{331}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{340}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)+F_{339}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{11}\! \left(x \right) F_{335}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{337}\! \left(x \right)+F_{338}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{11}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{11}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{11}\! \left(x \right) F_{331}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{11}\! \left(x \right) F_{341}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)+F_{344}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{11}\! \left(x \right) F_{245}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{345}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{331}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{348}\! \left(x \right)+F_{355}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{11}\! \left(x \right) F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{352}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{333}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{101}\! \left(x \right) F_{354}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right) F_{333}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 520 rules.

Finding the specification took 32713 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 520 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{362}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{334}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{0}\! \left(x \right) F_{10}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= -F_{316}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{36}\! \left(x \right)}\\ F_{29}\! \left(x \right) &= -F_{312}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{306}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{18}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{18}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{18}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{18}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{50}\! \left(x \right) &= 0\\ F_{51}\! \left(x \right) &= F_{18}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{18}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{18}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{18}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{18}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{18}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{18}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{0}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{18}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{80}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{18}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{18}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{18}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{78} \left(x \right)^{2} F_{2}\! \left(x \right)\\ F_{91}\! \left(x \right) &= \frac{F_{92}\! \left(x \right)}{F_{36}\! \left(x \right)}\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= -F_{96}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= \frac{F_{95}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{95}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{2}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{78}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{165}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{112}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{112}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{109}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{18}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{110}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{116}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{126}\! \left(x \right)+F_{132}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{159}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)+F_{132}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{123}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{130}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{115}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{131}\! \left(x \right)+F_{132}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{101}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{135}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{139}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{137}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{140}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{141}\! \left(x \right)+F_{145}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{141}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{147}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{155}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{152}\! \left(x \right)+F_{154}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{116}\! \left(x \right)\\ F_{154}\! \left(x \right) &= 0\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{157}\! \left(x \right)+F_{163}\! \left(x \right)+F_{164}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{124}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{161}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{161}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{156}\! \left(x \right)+F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{159}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{163}\! \left(x \right) &= 0\\ F_{164}\! \left(x \right) &= 0\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{225}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{18}\! \left(x \right) F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{189}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{18}\! \left(x \right) F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{189}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{167}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{18}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{171}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{18}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{186}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{206}\! \left(x \right)+F_{214}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{18}\! \left(x \right) F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)+F_{214}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{178}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{18}\! \left(x \right) F_{207}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{209}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{18}\! \left(x \right) F_{182}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{18}\! \left(x \right) F_{199}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{18}\! \left(x \right) F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{217}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{18}\! \left(x \right) F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{18}\! \left(x \right) F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{18}\! \left(x \right) F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{18}\! \left(x \right) F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{18} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{18}\! \left(x \right) F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{237}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{239}\! \left(x \right) F_{304}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{298}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{18}\! \left(x \right) F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{250}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{18}\! \left(x \right) F_{246}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{254}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{250}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{18}\! \left(x \right) F_{247}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{18}\! \left(x \right) F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{256}\! \left(x \right)+F_{257}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{18}\! \left(x \right) F_{248}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{18}\! \left(x \right) F_{254}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{264}\! \left(x \right)+F_{270}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{18}\! \left(x \right) F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{292}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{240}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{264}\! \left(x \right)+F_{270}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{18}\! \left(x \right) F_{261}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{18}\! \left(x \right) F_{265}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{283}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{50}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{269}\! \left(x \right)+F_{270}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{18}\! \left(x \right) F_{240}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{18}\! \left(x \right) F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{274}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{18}\! \left(x \right) F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{18}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{18}\! \left(x \right) F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{274}\! \left(x \right)+F_{282}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{18}\! \left(x \right) F_{280}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{285}\! \left(x \right)+F_{287}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{18}\! \left(x \right) F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{287}\! \left(x \right) &= 0\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{290}\! \left(x \right)+F_{296}\! \left(x \right)+F_{297}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{18}\! \left(x \right) F_{262}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{18}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{269}\! \left(x \right)\\ F_{294}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{289}\! \left(x \right)+F_{295}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{18}\! \left(x \right) F_{292}\! \left(x \right)\\ F_{296}\! \left(x \right) &= 0\\ F_{297}\! \left(x \right) &= 0\\ F_{298}\! \left(x \right) &= F_{18}\! \left(x \right) F_{299}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{301}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{18}\! \left(x \right) F_{303}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{304}\! \left(x \right) &= \frac{F_{305}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{305}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{18}\! \left(x \right) F_{307}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)+F_{309}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{2}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{310}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{311}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{2}\! \left(x \right) F_{313}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{315}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{316}\! \left(x \right) &= -F_{325}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= \frac{F_{318}\! \left(x \right)}{F_{36}\! \left(x \right)}\\ F_{318}\! \left(x \right) &= -F_{321}\! \left(x \right)+F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= \frac{F_{320}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{320}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{321}\! \left(x \right) &= F_{2}\! \left(x \right) F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{323}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{323}\! \left(x \right) &= F_{237}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{324}\! \left(x \right) &= F_{177}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{325}\! \left(x \right) &= -F_{326}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{327}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{327}\! \left(x \right) &= -F_{332}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{328}\! \left(x \right) &= F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{78} \left(x \right)^{3}\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{76} \left(x \right)^{2} F_{0}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{18}\! \left(x \right) F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)+F_{356}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{0}\! \left(x \right) F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)+F_{343}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{10}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{341}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{18}\! \left(x \right) F_{345}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{346}\! \left(x \right)+F_{347}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{348}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{18}\! \left(x \right) F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)+F_{352}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{16}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{18}\! \left(x \right) F_{354}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{347}\! \left(x \right)+F_{355}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{16} \left(x \right)^{2} F_{340}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{357}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{0}\! \left(x \right) F_{10}\! \left(x \right) F_{358}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{359}\! \left(x \right)\\ F_{359}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{360}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{360}\! \left(x \right) &= F_{340}\! \left(x \right)+F_{361}\! \left(x \right)\\ F_{361}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{362}\! \left(x \right) &= F_{363}\! \left(x \right)+F_{508}\! \left(x \right)\\ F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)+F_{368}\! \left(x \right)\\ F_{364}\! \left(x \right) &= F_{0}\! \left(x \right) F_{365}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{366}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{367}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{365}\! \left(x \right)\\ F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)\\ F_{369}\! \left(x \right) &= F_{0}\! \left(x \right) F_{370}\! \left(x \right) F_{383}\! \left(x \right)\\ F_{370}\! \left(x \right) &= -F_{10}\! \left(x \right)+F_{371}\! \left(x \right)\\ F_{371}\! \left(x \right) &= \frac{F_{372}\! \left(x \right)}{F_{76}\! \left(x \right)}\\ F_{372}\! \left(x \right) &= -F_{380}\! \left(x \right)+F_{373}\! \left(x \right)\\ F_{373}\! \left(x \right) &= F_{374}\! \left(x \right)+F_{375}\! \left(x \right)\\ F_{374}\! \left(x \right) &= F_{10}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{375}\! \left(x \right) &= F_{376}\! \left(x \right)\\ F_{376}\! \left(x \right) &= F_{18}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{377}\! \left(x \right) &= F_{367}\! \left(x \right)+F_{378}\! \left(x \right)\\ F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)\\ F_{379}\! \left(x \right) &= F_{0}\! \left(x \right) F_{371}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{380}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{381}\! \left(x \right)\\ F_{381}\! \left(x \right) &= F_{382}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{18}\! \left(x \right) F_{367}\! \left(x \right)\\ F_{383}\! \left(x \right) &= \frac{F_{384}\! \left(x \right)}{F_{76}\! \left(x \right)}\\ F_{384}\! \left(x \right) &= -F_{27}\! \left(x \right)+F_{385}\! \left(x \right)\\ F_{385}\! \left(x \right) &= \frac{F_{386}\! \left(x \right)}{F_{36}\! \left(x \right)}\\ F_{386}\! \left(x \right) &= F_{387}\! \left(x \right)\\ F_{387}\! \left(x \right) &= -F_{506}\! \left(x \right)+F_{388}\! \left(x \right)\\ F_{388}\! \left(x \right) &= -F_{391}\! \left(x \right)+F_{389}\! \left(x \right)\\ F_{389}\! \left(x \right) &= \frac{F_{390}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{390}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{391}\! \left(x \right) &= F_{392}\! \left(x \right)+F_{499}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{2}\! \left(x \right) F_{393}\! \left(x \right)\\ F_{393}\! \left(x \right) &= F_{394}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{394}\! \left(x \right) &= F_{395}\! \left(x \right)+F_{436}\! \left(x \right)\\ F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)\\ F_{396}\! \left(x \right) &= F_{18}\! \left(x \right) F_{397}\! \left(x \right)\\ F_{397}\! \left(x \right) &= F_{398}\! \left(x \right)+F_{399}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{395}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{400}\! \left(x \right)+F_{412}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{401}\! \left(x \right)\\ F_{401}\! \left(x \right) &= F_{18}\! \left(x \right) F_{402}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{404}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{405}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{18}\! \left(x \right) F_{403}\! \left(x \right)\\ F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{409}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{408}\! \left(x \right)\\ F_{408}\! \left(x \right) &= x^{2}\\ F_{409}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{410}\! \left(x \right)+F_{411}\! \left(x \right)\\ F_{410}\! \left(x \right) &= F_{18}\! \left(x \right) F_{404}\! \left(x \right)\\ F_{411}\! \left(x \right) &= F_{18}\! \left(x \right) F_{406}\! \left(x \right)\\ F_{412}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{413}\! \left(x \right)+F_{418}\! \left(x \right)\\ F_{413}\! \left(x \right) &= F_{18}\! \left(x \right) F_{414}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{415}\! \left(x \right)+F_{431}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{395}\! \left(x \right)+F_{416}\! \left(x \right)\\ F_{416}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{417}\! \left(x \right)+F_{418}\! \left(x \right)\\ F_{417}\! \left(x \right) &= F_{18}\! \left(x \right) F_{415}\! \left(x \right)\\ F_{418}\! \left(x \right) &= F_{18}\! \left(x \right) F_{419}\! \left(x \right)\\ F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)+F_{423}\! \left(x \right)\\ F_{420}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{421}\! \left(x \right)\\ F_{421}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{418}\! \left(x \right)+F_{422}\! \left(x \right)\\ F_{422}\! \left(x \right) &= F_{18}\! \left(x \right) F_{395}\! \left(x \right)\\ F_{423}\! \left(x \right) &= F_{424}\! \left(x \right)+F_{427}\! \left(x \right)\\ F_{424}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{410}\! \left(x \right)+F_{425}\! \left(x \right)\\ F_{425}\! \left(x \right) &= F_{18}\! \left(x \right) F_{426}\! \left(x \right)\\ F_{426}\! \left(x \right) &= F_{406}\! \left(x \right)\\ F_{427}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{428}\! \left(x \right)+F_{429}\! \left(x \right)+F_{435}\! \left(x \right)\\ F_{428}\! \left(x \right) &= F_{18}\! \left(x \right) F_{416}\! \left(x \right)\\ F_{429}\! \left(x \right) &= F_{18}\! \left(x \right) F_{430}\! \left(x \right)\\ F_{430}\! \left(x \right) &= F_{431}\! \left(x \right)\\ F_{431}\! \left(x \right) &= F_{432}\! \left(x \right)+F_{433}\! \left(x \right)\\ F_{432}\! \left(x \right) &= F_{422}\! \left(x \right)\\ F_{433}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{428}\! \left(x \right)+F_{434}\! \left(x \right)\\ F_{434}\! \left(x \right) &= F_{18}\! \left(x \right) F_{431}\! \left(x \right)\\ F_{435}\! \left(x \right) &= 0\\ F_{436}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{437}\! \left(x \right)+F_{494}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{18}\! \left(x \right) F_{438}\! \left(x \right)\\ F_{438}\! \left(x \right) &= F_{439}\! \left(x \right)+F_{440}\! \left(x \right)\\ F_{439}\! \left(x \right) &= F_{436}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)+F_{455}\! \left(x \right)\\ F_{441}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{442}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{442}\! \left(x \right) &= F_{18}\! \left(x \right) F_{443}\! \left(x \right)\\ F_{443}\! \left(x \right) &= F_{444}\! \left(x \right)+F_{451}\! \left(x \right)\\ F_{444}\! \left(x \right) &= F_{445}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{445}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{446}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{18}\! \left(x \right) F_{444}\! \left(x \right)\\ F_{447}\! \left(x \right) &= F_{18}\! \left(x \right) F_{448}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{407}\! \left(x \right)+F_{449}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{450}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{18}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{449}\! \left(x \right)+F_{452}\! \left(x \right)\\ F_{452}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{453}\! \left(x \right)+F_{454}\! \left(x \right)\\ F_{453}\! \left(x \right) &= F_{18}\! \left(x \right) F_{445}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{18}\! \left(x \right) F_{451}\! \left(x \right)\\ F_{455}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{456}\! \left(x \right)+F_{461}\! \left(x \right)+F_{467}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{18}\! \left(x \right) F_{457}\! \left(x \right)\\ F_{457}\! \left(x \right) &= F_{458}\! \left(x \right)+F_{488}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{436}\! \left(x \right)+F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{460}\! \left(x \right)+F_{461}\! \left(x \right)+F_{467}\! \left(x \right)\\ F_{460}\! \left(x \right) &= F_{18}\! \left(x \right) F_{458}\! \left(x \right)\\ F_{461}\! \left(x \right) &= F_{18}\! \left(x \right) F_{462}\! \left(x \right)\\ F_{462}\! \left(x \right) &= F_{463}\! \left(x \right)+F_{479}\! \left(x \right)\\ F_{463}\! \left(x \right) &= F_{464}\! \left(x \right)+F_{465}\! \left(x \right)\\ F_{464}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{447}\! \left(x \right)+F_{450}\! \left(x \right)\\ F_{465}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{461}\! \left(x \right)+F_{466}\! \left(x \right)+F_{467}\! \left(x \right)\\ F_{466}\! \left(x \right) &= F_{18}\! \left(x \right) F_{436}\! \left(x \right)\\ F_{467}\! \left(x \right) &= F_{18}\! \left(x \right) F_{468}\! \left(x \right)\\ F_{468}\! \left(x \right) &= F_{424}\! \left(x \right)+F_{469}\! \left(x \right)\\ F_{469}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{470}\! \left(x \right)+F_{474}\! \left(x \right)\\ F_{470}\! \left(x \right) &= F_{18}\! \left(x \right) F_{471}\! \left(x \right)\\ F_{471}\! \left(x \right) &= F_{472}\! \left(x \right)\\ F_{472}\! \left(x \right) &= F_{18}\! \left(x \right) F_{473}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{471}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{474}\! \left(x \right) &= F_{18}\! \left(x \right) F_{475}\! \left(x \right)\\ F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)\\ F_{476}\! \left(x \right) &= F_{449}\! \left(x \right)+F_{477}\! \left(x \right)\\ F_{477}\! \left(x \right) &= 3 F_{50}\! \left(x \right)+F_{470}\! \left(x \right)+F_{478}\! \left(x \right)\\ F_{478}\! \left(x \right) &= F_{18}\! \left(x \right) F_{476}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{480}\! \left(x \right)+F_{484}\! \left(x \right)\\ F_{480}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{453}\! \left(x \right)+F_{481}\! \left(x \right)+F_{483}\! \left(x \right)\\ F_{481}\! \left(x \right) &= F_{18}\! \left(x \right) F_{482}\! \left(x \right)\\ F_{482}\! \left(x \right) &= F_{451}\! \left(x \right)\\ F_{483}\! \left(x \right) &= 0\\ F_{484}\! \left(x \right) &= 2 F_{50}\! \left(x \right)+F_{485}\! \left(x \right)+F_{486}\! \left(x \right)+F_{492}\! \left(x \right)+F_{493}\! \left(x \right)\\ F_{485}\! \left(x \right) &= F_{18}\! \left(x \right) F_{459}\! \left(x \right)\\ F_{486}\! \left(x \right) &= F_{18}\! \left(x \right) F_{487}\! \left(x \right)\\ F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)\\ F_{488}\! \left(x \right) &= F_{489}\! \left(x \right)+F_{490}\! \left(x \right)\\ F_{489}\! \left(x \right) &= F_{466}\! \left(x \right)\\ F_{490}\! \left(x \right) &= 4 F_{50}\! \left(x \right)+F_{485}\! \left(x \right)+F_{491}\! \left(x \right)\\ F_{491}\! \left(x \right) &= F_{18}\! \left(x \right) F_{488}\! \left(x \right)\\ F_{492}\! \left(x \right) &= 0\\ F_{493}\! \left(x \right) &= 0\\ F_{494}\! \left(x \right) &= F_{18}\! \left(x \right) F_{495}\! \left(x \right)\\ F_{495}\! \left(x \right) &= F_{400}\! \left(x \right)+F_{496}\! \left(x \right)\\ F_{496}\! \left(x \right) &= F_{497}\! \left(x \right)\\ F_{497}\! \left(x \right) &= F_{18}\! \left(x \right) F_{498}\! \left(x \right)\\ F_{498}\! \left(x \right) &= F_{473}\! \left(x \right)+F_{476}\! \left(x \right)\\ F_{499}\! \left(x \right) &= F_{500}\! \left(x \right)\\ F_{500}\! \left(x \right) &= F_{36}\! \left(x \right) F_{501}\! \left(x \right)\\ F_{501}\! \left(x \right) &= F_{502}\! \left(x \right)\\ F_{502}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{503}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{504}\! \left(x \right) &= F_{505}\! \left(x \right)\\ F_{505}\! \left(x \right) &= x^{2}\\ F_{506}\! \left(x \right) &= F_{2}\! \left(x \right) F_{507}\! \left(x \right)\\ F_{507}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)\\ F_{509}\! \left(x \right) &= F_{0}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{510}\! \left(x \right) &= -F_{518}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{511}\! \left(x \right) &= \frac{F_{512}\! \left(x \right)}{F_{18}\! \left(x \right)}\\ F_{512}\! \left(x \right) &= F_{513}\! \left(x \right)\\ F_{513}\! \left(x \right) &= F_{18}\! \left(x \right) F_{341}\! \left(x \right) F_{514}\! \left(x \right)\\ F_{514}\! \left(x \right) &= F_{515}\! \left(x \right)+F_{516}\! \left(x \right)\\ F_{515}\! \left(x \right) &= F_{2}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{516}\! \left(x \right) &= F_{517}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{18}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{518}\! \left(x \right) &= F_{519}\! \left(x \right)\\ F_{519}\! \left(x \right) &= F_{10}\! \left(x \right) F_{341}\! \left(x \right) F_{76}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row And Col Placements Req Corrob" and has 245 rules.

Finding the specification took 12379 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 245 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= 0\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{13}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{0}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{36}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{0}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= \frac{F_{41}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= -F_{45}\! \left(x \right)-F_{48}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{44}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{20}\! \left(x \right) F_{59}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{12}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{62}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{72}\! \left(x \right) &= -F_{29}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{82}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{0}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{12}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{0}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= \frac{F_{87}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{87}\! \left(x \right) &= -F_{77}\! \left(x \right)-F_{89}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{12}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{20} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{102}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{2}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{111}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{0}\! \left(x \right) F_{105}\! \left(x \right) F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{128}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{12}\! \left(x \right) F_{127}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{12}\! \left(x \right) F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{0}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{12}\! \left(x \right) F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{0}\! \left(x \right) F_{20}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{105}\! \left(x \right) F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{12}\! \left(x \right) F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{12}\! \left(x \right) F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{139}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{137}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{135}\! \left(x \right) &= -F_{136}\! \left(x \right)-F_{6}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{12}\! \left(x \right) F_{132}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{12}\! \left(x \right) F_{121}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{12}\! \left(x \right) F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{12}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{59}\! \left(x \right) F_{61}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{12}\! \left(x \right) F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{0}\! \left(x \right) F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{157}\! \left(x \right) &= -F_{228}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= \frac{F_{159}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{160}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{162}\! \left(x \right)+F_{164}\! \left(x \right)+F_{166}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{166}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{164}\! \left(x \right)-F_{219}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{12}\! \left(x \right) F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{0}\! \left(x \right) F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= \frac{F_{174}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{174}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{12}\! \left(x \right) F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{182}\! \left(x \right) &= \frac{F_{183}\! \left(x \right)}{F_{12}\! \left(x \right) F_{20}\! \left(x \right)}\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{200}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= -F_{189}\! \left(x \right)-2 F_{6}\! \left(x \right)+F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= \frac{F_{135}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{12}\! \left(x \right) F_{191}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{0}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{12}\! \left(x \right) F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{0}\! \left(x \right) F_{43}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{55} \left(x \right)^{2} F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{200}\! \left(x \right) &= -F_{187}\! \left(x \right)-F_{207}\! \left(x \right)-F_{6}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{202}\! \left(x \right)+F_{206}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{12}\! \left(x \right) F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{12}\! \left(x \right) F_{201}\! \left(x \right)\\ F_{207}\! \left(x \right) &= -F_{187}\! \left(x \right)-F_{211}\! \left(x \right)-F_{6}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{206}\! \left(x \right)+F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{12}\! \left(x \right) F_{151}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{12}\! \left(x \right) F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{12}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{217}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{0}\! \left(x \right) F_{125}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{219}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{220}\! \left(x \right)-F_{223}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{12}\! \left(x \right) F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{12}\! \left(x \right) F_{191}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{0}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{12}\! \left(x \right) F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{242}\! \left(x \right)+F_{244}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{12}\! \left(x \right) F_{236}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{237}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{0}\! \left(x \right) F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= \frac{F_{239}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= -F_{241}\! \left(x \right)-F_{48}\! \left(x \right)-F_{77}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{12}\! \left(x \right) F_{233}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{91}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 567 rules.

Finding the specification took 76432 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 567 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= -F_{564}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= -F_{562}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{20}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{508}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{506}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{14}\! \left(x , y\right) &= F_{130}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{126}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= x\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{20}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{20}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{20}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{36}\! \left(x \right) &= 0\\ F_{37}\! \left(x \right) &= F_{20}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{20}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{20}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{20}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{20}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{20}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{36}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{20}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{60}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{20}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{20}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{20}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{18}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{71}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{20}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{20}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{74}\! \left(x \right)+F_{79}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{20}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{78}\! \left(x \right)+F_{79}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{20}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{20}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{79}\! \left(x \right)+F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{20}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{20}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{68}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{20}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{68}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{20}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{94}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{20}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{20}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{20}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{101}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{102}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{100}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{107}\! \left(x \right)+F_{36}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{107}\! \left(x \right) &= 0\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)+F_{116}\! \left(x \right)+F_{117}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{20}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{114}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{109}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{112}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{116}\! \left(x \right) &= 0\\ F_{117}\! \left(x \right) &= 0\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{126}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{127}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{128}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{126}\! \left(x , y\right) F_{129}\! \left(x , y\right)\\ F_{129}\! \left(x , y\right) &= y x\\ F_{130}\! \left(x , y\right) &= F_{131}\! \left(x , y\right)+F_{138}\! \left(x , y\right)\\ F_{131}\! \left(x , y\right) &= F_{132}\! \left(x , y\right)\\ F_{132}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{133}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= F_{126}\! \left(x , y\right)+F_{134}\! \left(x , y\right)\\ F_{134}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)+F_{135}\! \left(x , y\right)\\ F_{135}\! \left(x , y\right) &= F_{136}\! \left(x , y\right)\\ F_{136}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{137}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)+F_{135}\! \left(x , y\right)\\ F_{138}\! \left(x , y\right) &= F_{139}\! \left(x , y\right)+F_{193}\! \left(x , y\right)+F_{36}\! \left(x \right)\\ F_{139}\! \left(x , y\right) &= F_{140}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{140}\! \left(x , y\right) &= F_{130}\! \left(x , y\right)+F_{141}\! \left(x , y\right)\\ F_{141}\! \left(x , y\right) &= F_{142}\! \left(x , y\right)+F_{160}\! \left(x , y\right)\\ F_{142}\! \left(x , y\right) &= F_{143}\! \left(x , y\right)+F_{149}\! \left(x , y\right)+F_{36}\! \left(x \right)\\ F_{143}\! \left(x , y\right) &= F_{144}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{144}\! \left(x , y\right) &= F_{145}\! \left(x , y\right)+F_{146}\! \left(x , y\right)\\ F_{145}\! \left(x , y\right) &= F_{131}\! \left(x , y\right)+F_{142}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= F_{147}\! \left(x , y\right)+F_{157}\! \left(x , y\right)\\ F_{147}\! \left(x , y\right) &= F_{148}\! \left(x , y\right)+F_{149}\! \left(x , y\right)+F_{36}\! \left(x \right)\\ F_{148}\! \left(x , y\right) &= F_{131}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{149}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{150}\! \left(x , y\right)\\ F_{150}\! \left(x , y\right) &= F_{151}\! \left(x , y\right)+F_{154}\! \left(x , y\right)\\ F_{151}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)+F_{20}\! \left(x \right)\\ F_{152}\! \left(x , y\right) &= F_{153}\! \left(x , y\right)\\ F_{153}\! \left(x , y\right) &= F_{127}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{154}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)+F_{155}\! \left(x , y\right)\\ F_{155}\! \left(x , y\right) &= F_{156}\! \left(x , y\right)\\ F_{156}\! \left(x , y\right) &= F_{135}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{157}\! \left(x , y\right) &= F_{158}\! \left(x , y\right)\\ F_{158}\! \left(x , y\right) &= F_{159}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{159}\! \left(x , y\right) &= F_{146}\! \left(x , y\right)\\ F_{160}\! \left(x , y\right) &= F_{161}\! \left(x , y\right)+F_{167}\! \left(x , y\right)+F_{175}\! \left(x , y\right)+F_{36}\! \left(x \right)\\ F_{161}\! \left(x , y\right) &= F_{162}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{162}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)+F_{164}\! \left(x , y\right)\\ F_{163}\! \left(x , y\right) &= F_{138}\! \left(x , y\right)+F_{160}\! \left(x , y\right)\\ F_{164}\! \left(x , y\right) &= F_{165}\! \left(x , y\right)+F_{190}\! \left(x , y\right)\\ F_{165}\! \left(x , y\right) &= F_{166}\! \left(x , y\right)+F_{167}\! \left(x , y\right)+F_{175}\! \left(x , y\right)+F_{36}\! \left(x \right)\\ F_{166}\! \left(x , y\right) &= F_{138}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{167}\! \left(x , y\right) &= F_{168}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{168}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)+F_{170}\! \left(x , y\right)\\ F_{169}\! \left(x , y\right) &= F_{147}\! \left(x , y\right)+F_{165}\! \left(x , y\right)\\ F_{170}\! \left(x , y\right) &= F_{171}\! \left(x , y\right)+F_{173}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{172}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= F_{142}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{173}\! \left(x , y\right) &= F_{174}\! \left(x , y\right)\\ F_{174}\! \left(x , y\right) &= F_{160}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{175}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{176}\! \left(x , y\right)\\ F_{176}\! \left(x , y\right) &= F_{177}\! \left(x , y\right)+F_{184}\! \left(x , y\right)\\ F_{177}\! \left(x , y\right) &= F_{178}\! \left(x \right)+F_{179}\! \left(x , y\right)\\ F_{178}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{179}\! \left(x , y\right) &= F_{180}\! \left(x , y\right)\\ F_{180}\! \left(x , y\right) &= F_{181}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{181}\! \left(x , y\right) &= F_{182}\! \left(x , y\right)\\ F_{182}\! \left(x , y\right) &= F_{183}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{183}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)+F_{181}\! \left(x , y\right)\\ F_{184}\! \left(x , y\right) &= F_{179}\! \left(x , y\right)+F_{185}\! \left(x , y\right)\\ F_{185}\! \left(x , y\right) &= F_{186}\! \left(x , y\right)\\ F_{186}\! \left(x , y\right) &= F_{187}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{187}\! \left(x , y\right) &= F_{188}\! \left(x , y\right)\\ F_{188}\! \left(x , y\right) &= F_{189}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{189}\! \left(x , y\right) &= F_{135}\! \left(x , y\right)+F_{187}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{191}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{192}\! \left(x , y\right) F_{20}\! \left(x \right)\\ F_{192}\! \left(x , y\right) &= F_{164}\! \left(x , y\right)\\ F_{193}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{194}\! \left(x , y\right)\\ F_{194}\! \left(x , y\right) &= F_{195}\! \left(x , y\right)+F_{196}\! \left(x , y\right)\\ F_{195}\! \left(x , y\right) &= F_{18}\! \left(x \right)+F_{181}\! \left(x , y\right)\\ F_{196}\! \left(x , y\right) &= F_{181}\! \left(x , y\right)+F_{187}\! \left(x , y\right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{487}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{20}\! \left(x \right) F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= -F_{421}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{201}\! \left(x \right) &= \frac{F_{202}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right) F_{207}\! \left(x \right)\\ F_{205}\! \left(x \right) &= \frac{F_{206}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{206}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{266}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{20}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{226}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{218}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{20}\! \left(x \right) F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{218}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{20}\! \left(x \right) F_{215}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{20}\! \left(x \right) F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{224}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{20}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{20}\! \left(x \right) F_{222}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{232}\! \left(x \right)+F_{238}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{20}\! \left(x \right) F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)+F_{260}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{232}\! \left(x \right)+F_{238}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{20}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{20}\! \left(x \right) F_{233}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{251}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{36}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{236}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{237}\! \left(x \right)+F_{238}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{20}\! \left(x \right) F_{208}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{20}\! \left(x \right) F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{241}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{242}\! \left(x \right)+F_{246}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{20}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{20}\! \left(x \right) F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{20}\! \left(x \right) F_{247}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{249}\! \left(x \right)\\ F_{249}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{242}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{20}\! \left(x \right) F_{248}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{256}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{253}\! \left(x \right)+F_{255}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{20}\! \left(x \right) F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{222}\! \left(x \right)\\ F_{255}\! \left(x \right) &= 0\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{258}\! \left(x \right)+F_{264}\! \left(x \right)+F_{265}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{20}\! \left(x \right) F_{230}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{20}\! \left(x \right) F_{259}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{237}\! \left(x \right)\\ F_{262}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{257}\! \left(x \right)+F_{263}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{20}\! \left(x \right) F_{260}\! \left(x \right)\\ F_{264}\! \left(x \right) &= 0\\ F_{265}\! \left(x \right) &= 0\\ F_{266}\! \left(x \right) &= F_{20}\! \left(x \right) F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{269}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{20}\! \left(x \right) F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{248}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{20}\! \left(x \right) F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{0}\! \left(x \right) F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{20}\! \left(x \right) F_{278}\! \left(x \right)\\ F_{278}\! \left(x \right) &= \frac{F_{279}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{279}\! \left(x \right) &= F_{197}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{361}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)+F_{321}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right) F_{298}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{294}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{20}\! \left(x \right) F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{288}\! \left(x \right)+F_{289}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{0}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{20}\! \left(x \right) F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{0}\! \left(x \right) F_{205}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{17}\! \left(x \right) F_{284}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right) F_{297}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{20}\! \left(x \right)\\ F_{297}\! \left(x \right) &= -F_{25}\! \left(x \right)+F_{205}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{303}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{20}\! \left(x \right) F_{302}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{299}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{18}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{308}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{303}\! \left(x \right)+F_{306}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{20}\! \left(x \right) F_{307}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)+F_{311}\! \left(x \right)+F_{320}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{20}\! \left(x \right) F_{310}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{308}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{20}\! \left(x \right) F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{20}\! \left(x \right) F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{314}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{20}\! \left(x \right) F_{319}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{317}\! \left(x \right)\\ F_{320}\! \left(x \right) &= 0\\ F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= F_{307}\! \left(x \right) F_{323}\! \left(x \right)\\ F_{323}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= \frac{F_{325}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x \right)\\ F_{326}\! \left(x \right) &= -F_{358}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{327}\! \left(x \right) &= \frac{F_{328}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{328}\! \left(x \right) &= F_{329}\! \left(x \right)\\ F_{329}\! \left(x \right) &= F_{20}\! \left(x \right) F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{334}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{2}\! \left(x \right) F_{332}\! \left(x \right)\\ F_{332}\! \left(x \right) &= \frac{F_{333}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{333}\! \left(x \right) &= F_{297}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{17}\! \left(x \right) F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)+F_{352}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{17}\! \left(x \right) F_{338}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{20}\! \left(x \right) F_{340}\! \left(x \right)\\ F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)+F_{347}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{342}\! \left(x \right)\\ F_{342}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{343}\! \left(x \right)\\ F_{343}\! \left(x \right) &= F_{344}\! \left(x \right)\\ F_{344}\! \left(x \right) &= F_{20}\! \left(x \right) F_{345}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{2}\! \left(x \right) F_{205}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{20}\! \left(x \right) F_{349}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{287}\! \left(x \right)+F_{350}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{351}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{297}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{295}\! \left(x \right) F_{353}\! \left(x \right)\\ F_{353}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{354}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{355}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\ F_{356}\! \left(x \right) &= F_{0}\! \left(x \right) F_{20}\! \left(x \right) F_{354}\! \left(x \right)\\ F_{357}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{358}\! \left(x \right) &= F_{2}\! \left(x \right) F_{359}\! \left(x \right)\\ F_{359}\! \left(x \right) &= \frac{F_{360}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{360}\! \left(x \right) &= F_{297}\! \left(x \right)\\ F_{361}\! \left(x \right) &= F_{362}\! \left(x \right)\\ F_{362}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right) F_{363}\! \left(x \right)\\ F_{363}\! \left(x \right) &= \frac{F_{364}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{364}\! \left(x \right) &= -F_{381}\! \left(x \right)+F_{365}\! \left(x \right)\\ F_{365}\! \left(x \right) &= F_{366}\! \left(x \right)+F_{376}\! \left(x \right)\\ F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)\\ F_{367}\! \left(x \right) &= F_{20}\! \left(x \right) F_{368}\! \left(x \right)\\ F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)+F_{370}\! \left(x \right)\\ F_{369}\! \left(x \right) &= F_{17}\! \left(x \right) F_{285}\! \left(x \right)\\ F_{370}\! \left(x \right) &= F_{25}\! \left(x \right) F_{295}\! \left(x \right) F_{371}\! \left(x \right)\\ F_{371}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{372}\! \left(x \right)\\ F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)\\ F_{373}\! \left(x \right) &= F_{20}\! \left(x \right) F_{374}\! \left(x \right)\\ F_{374}\! \left(x \right) &= F_{355}\! \left(x \right)+F_{375}\! \left(x \right)\\ F_{375}\! \left(x \right) &= F_{18}\! \left(x \right) F_{354}\! \left(x \right)\\ F_{376}\! \left(x \right) &= F_{295}\! \left(x \right) F_{377}\! \left(x \right) F_{378}\! \left(x \right)\\ F_{377}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{371}\! \left(x \right)\\ F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)\\ F_{379}\! \left(x \right) &= F_{20}\! \left(x \right) F_{380}\! \left(x \right)\\ F_{380}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{346}\! \left(x \right)\\ F_{381}\! \left(x \right) &= F_{295}\! \left(x \right) F_{371}\! \left(x \right) F_{382}\! \left(x \right)\\ F_{382}\! \left(x \right) &= F_{378}\! \left(x \right)+F_{383}\! \left(x \right)\\ F_{383}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{384}\! \left(x \right)\\ F_{384}\! \left(x \right) &= F_{385}\! \left(x \right)\\ F_{385}\! \left(x \right) &= F_{20}\! \left(x \right) F_{386}\! \left(x \right)\\ F_{386}\! \left(x \right) &= F_{383}\! \left(x \right)+F_{387}\! \left(x \right)\\ F_{387}\! \left(x \right) &= F_{388}\! \left(x \right)+F_{397}\! \left(x \right)\\ F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\ F_{389}\! \left(x \right) &= F_{20}\! \left(x \right) F_{390}\! \left(x \right)\\ F_{390}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{391}\! \left(x \right)\\ F_{391}\! \left(x \right) &= F_{392}\! \left(x \right)+F_{394}\! \left(x \right)\\ F_{392}\! \left(x \right) &= F_{393}\! \left(x \right)\\ F_{393}\! \left(x \right) &= x^{2}\\ F_{394}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{395}\! \left(x \right)+F_{396}\! \left(x \right)\\ F_{395}\! \left(x \right) &= F_{20}\! \left(x \right) F_{314}\! \left(x \right)\\ F_{396}\! \left(x \right) &= F_{20}\! \left(x \right) F_{391}\! \left(x \right)\\ F_{397}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{398}\! \left(x \right)+F_{403}\! \left(x \right)\\ F_{398}\! \left(x \right) &= F_{20}\! \left(x \right) F_{399}\! \left(x \right)\\ F_{399}\! \left(x \right) &= F_{400}\! \left(x \right)+F_{416}\! \left(x \right)\\ F_{400}\! \left(x \right) &= F_{384}\! \left(x \right)+F_{401}\! \left(x \right)\\ F_{401}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{402}\! \left(x \right)+F_{403}\! \left(x \right)\\ F_{402}\! \left(x \right) &= F_{20}\! \left(x \right) F_{400}\! \left(x \right)\\ F_{403}\! \left(x \right) &= F_{20}\! \left(x \right) F_{404}\! \left(x \right)\\ F_{404}\! \left(x \right) &= F_{405}\! \left(x \right)+F_{408}\! \left(x \right)\\ F_{405}\! \left(x \right) &= F_{392}\! \left(x \right)+F_{406}\! \left(x \right)\\ F_{406}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{403}\! \left(x \right)+F_{407}\! \left(x \right)\\ F_{407}\! \left(x \right) &= F_{20}\! \left(x \right) F_{384}\! \left(x \right)\\ F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)+F_{412}\! \left(x \right)\\ F_{409}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{395}\! \left(x \right)+F_{410}\! \left(x \right)\\ F_{410}\! \left(x \right) &= F_{20}\! \left(x \right) F_{411}\! \left(x \right)\\ F_{411}\! \left(x \right) &= F_{391}\! \left(x \right)\\ F_{412}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{413}\! \left(x \right)+F_{414}\! \left(x \right)+F_{420}\! \left(x \right)\\ F_{413}\! \left(x \right) &= F_{20}\! \left(x \right) F_{401}\! \left(x \right)\\ F_{414}\! \left(x \right) &= F_{20}\! \left(x \right) F_{415}\! \left(x \right)\\ F_{415}\! \left(x \right) &= F_{416}\! \left(x \right)\\ F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)+F_{418}\! \left(x \right)\\ F_{417}\! \left(x \right) &= F_{407}\! \left(x \right)\\ F_{418}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{413}\! \left(x \right)+F_{419}\! \left(x \right)\\ F_{419}\! \left(x \right) &= F_{20}\! \left(x \right) F_{416}\! \left(x \right)\\ F_{420}\! \left(x \right) &= 0\\ F_{421}\! \left(x \right) &= F_{205}\! \left(x \right) F_{422}\! \left(x \right)\\ F_{422}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{423}\! \left(x \right)\\ F_{423}\! \left(x \right) &= F_{384}\! \left(x \right)+F_{424}\! \left(x \right)\\ F_{424}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{425}\! \left(x \right)+F_{482}\! \left(x \right)\\ F_{425}\! \left(x \right) &= F_{20}\! \left(x \right) F_{426}\! \left(x \right)\\ F_{426}\! \left(x \right) &= F_{427}\! \left(x \right)+F_{428}\! \left(x \right)\\ F_{427}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{424}\! \left(x \right)\\ F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)+F_{443}\! \left(x \right)\\ F_{429}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{430}\! \left(x \right)+F_{435}\! \left(x \right)\\ F_{430}\! \left(x \right) &= F_{20}\! \left(x \right) F_{431}\! \left(x \right)\\ F_{431}\! \left(x \right) &= F_{432}\! \left(x \right)+F_{439}\! \left(x \right)\\ F_{432}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{433}\! \left(x \right)\\ F_{433}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{434}\! \left(x \right)+F_{435}\! \left(x \right)\\ F_{434}\! \left(x \right) &= F_{20}\! \left(x \right) F_{432}\! \left(x \right)\\ F_{435}\! \left(x \right) &= F_{20}\! \left(x \right) F_{436}\! \left(x \right)\\ F_{436}\! \left(x \right) &= F_{392}\! \left(x \right)+F_{437}\! \left(x \right)\\ F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)\\ F_{438}\! \left(x \right) &= F_{20}\! \left(x \right) F_{305}\! \left(x \right)\\ F_{439}\! \left(x \right) &= F_{437}\! \left(x \right)+F_{440}\! \left(x \right)\\ F_{440}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{441}\! \left(x \right)+F_{442}\! \left(x \right)\\ F_{441}\! \left(x \right) &= F_{20}\! \left(x \right) F_{433}\! \left(x \right)\\ F_{442}\! \left(x \right) &= F_{20}\! \left(x \right) F_{439}\! \left(x \right)\\ F_{443}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{444}\! \left(x \right)+F_{449}\! \left(x \right)+F_{455}\! \left(x \right)\\ F_{444}\! \left(x \right) &= F_{20}\! \left(x \right) F_{445}\! \left(x \right)\\ F_{445}\! \left(x \right) &= F_{446}\! \left(x \right)+F_{476}\! \left(x \right)\\ F_{446}\! \left(x \right) &= F_{424}\! \left(x \right)+F_{447}\! \left(x \right)\\ F_{447}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{448}\! \left(x \right)+F_{449}\! \left(x \right)+F_{455}\! \left(x \right)\\ F_{448}\! \left(x \right) &= F_{20}\! \left(x \right) F_{446}\! \left(x \right)\\ F_{449}\! \left(x \right) &= F_{20}\! \left(x \right) F_{450}\! \left(x \right)\\ F_{450}\! \left(x \right) &= F_{451}\! \left(x \right)+F_{467}\! \left(x \right)\\ F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)+F_{453}\! \left(x \right)\\ F_{452}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{435}\! \left(x \right)+F_{438}\! \left(x \right)\\ F_{453}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{449}\! \left(x \right)+F_{454}\! \left(x \right)+F_{455}\! \left(x \right)\\ F_{454}\! \left(x \right) &= F_{20}\! \left(x \right) F_{424}\! \left(x \right)\\ F_{455}\! \left(x \right) &= F_{20}\! \left(x \right) F_{456}\! \left(x \right)\\ F_{456}\! \left(x \right) &= F_{409}\! \left(x \right)+F_{457}\! \left(x \right)\\ F_{457}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{458}\! \left(x \right)+F_{462}\! \left(x \right)\\ F_{458}\! \left(x \right) &= F_{20}\! \left(x \right) F_{459}\! \left(x \right)\\ F_{459}\! \left(x \right) &= F_{460}\! \left(x \right)\\ F_{460}\! \left(x \right) &= F_{20}\! \left(x \right) F_{461}\! \left(x \right)\\ F_{461}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{459}\! \left(x \right)\\ F_{462}\! \left(x \right) &= F_{20}\! \left(x \right) F_{463}\! \left(x \right)\\ F_{463}\! \left(x \right) &= F_{464}\! \left(x \right)\\ F_{464}\! \left(x \right) &= F_{437}\! \left(x \right)+F_{465}\! \left(x \right)\\ F_{465}\! \left(x \right) &= 3 F_{36}\! \left(x \right)+F_{458}\! \left(x \right)+F_{466}\! \left(x \right)\\ F_{466}\! \left(x \right) &= F_{20}\! \left(x \right) F_{464}\! \left(x \right)\\ F_{467}\! \left(x \right) &= F_{468}\! \left(x \right)+F_{472}\! \left(x \right)\\ F_{468}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{441}\! \left(x \right)+F_{469}\! \left(x \right)+F_{471}\! \left(x \right)\\ F_{469}\! \left(x \right) &= F_{20}\! \left(x \right) F_{470}\! \left(x \right)\\ F_{470}\! \left(x \right) &= F_{439}\! \left(x \right)\\ F_{471}\! \left(x \right) &= 0\\ F_{472}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{473}\! \left(x \right)+F_{474}\! \left(x \right)+F_{480}\! \left(x \right)+F_{481}\! \left(x \right)\\ F_{473}\! \left(x \right) &= F_{20}\! \left(x \right) F_{447}\! \left(x \right)\\ F_{474}\! \left(x \right) &= F_{20}\! \left(x \right) F_{475}\! \left(x \right)\\ F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)\\ F_{476}\! \left(x \right) &= F_{477}\! \left(x \right)+F_{478}\! \left(x \right)\\ F_{477}\! \left(x \right) &= F_{454}\! \left(x \right)\\ F_{478}\! \left(x \right) &= 4 F_{36}\! \left(x \right)+F_{473}\! \left(x \right)+F_{479}\! \left(x \right)\\ F_{479}\! \left(x \right) &= F_{20}\! \left(x \right) F_{476}\! \left(x \right)\\ F_{480}\! \left(x \right) &= 0\\ F_{481}\! \left(x \right) &= 0\\ F_{482}\! \left(x \right) &= F_{20}\! \left(x \right) F_{483}\! \left(x \right)\\ F_{483}\! \left(x \right) &= F_{388}\! \left(x \right)+F_{484}\! \left(x \right)\\ F_{484}\! \left(x \right) &= F_{485}\! \left(x \right)\\ F_{485}\! \left(x \right) &= F_{20}\! \left(x \right) F_{486}\! \left(x \right)\\ F_{486}\! \left(x \right) &= F_{461}\! \left(x \right)+F_{464}\! \left(x \right)\\ F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)\\ F_{488}\! \left(x \right) &= F_{489}\! \left(x \right)+F_{505}\! \left(x \right)\\ F_{489}\! \left(x \right) &= F_{490}\! \left(x \right)\\ F_{490}\! \left(x \right) &= F_{20}\! \left(x \right) F_{491}\! \left(x \right)\\ F_{491}\! \left(x \right) &= F_{492}\! \left(x \right)+F_{493}\! \left(x \right)\\ F_{492}\! \left(x \right) &= F_{25}\! \left(x \right) F_{371}\! \left(x \right)\\ F_{493}\! \left(x \right) &= F_{494}\! \left(x \right)\\ F_{494}\! \left(x \right) &= F_{20}\! \left(x \right) F_{495}\! \left(x \right)\\ F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)+F_{497}\! \left(x \right)\\ F_{496}\! \left(x \right) &= F_{205}\! \left(x \right) F_{25}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{497}\! \left(x \right) &= F_{17}\! \left(x \right) F_{498}\! \left(x \right)\\ F_{498}\! \left(x \right) &= F_{499}\! \left(x \right)\\ F_{499}\! \left(x \right) &= F_{20}\! \left(x \right) F_{500}\! \left(x \right)\\ F_{500}\! \left(x \right) &= F_{501}\! \left(x \right)+F_{503}\! \left(x \right)\\ F_{501}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{502}\! \left(x \right)\\ F_{502}\! \left(x \right) &= F_{25}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)\\ F_{504}\! \left(x \right) &= F_{0}\! \left(x \right) F_{297}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{505}\! \left(x \right) &= F_{372}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)\\ F_{507}\! \left(x \right) &= F_{17}\! \left(x \right) F_{18}\! \left(x \right) F_{25}\! \left(x \right) F_{377}\! \left(x \right)\\ F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)+F_{540}\! \left(x \right)\\ F_{509}\! \left(x \right) &= F_{377}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{510}\! \left(x \right) &= -F_{538}\! \left(x \right)+F_{511}\! \left(x \right)\\ F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)+F_{522}\! \left(x \right)\\ F_{512}\! \left(x \right) &= F_{513}\! \left(x \right)+F_{516}\! \left(x \right)\\ F_{513}\! \left(x \right) &= -F_{25}\! \left(x \right)+F_{514}\! \left(x \right)\\ F_{514}\! \left(x \right) &= \frac{F_{515}\! \left(x \right)}{F_{20}\! \left(x \right)}\\ F_{515}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{516}\! \left(x \right) &= F_{517}\! \left(x \right)\\ F_{517}\! \left(x \right) &= F_{20}\! \left(x \right) F_{518}\! \left(x \right)\\ F_{518}\! \left(x \right) &= F_{519}\! \left(x , 1\right)\\ F_{519}\! \left(x , y\right) &= F_{512}\! \left(x \right)+F_{520}\! \left(x , y\right)\\ F_{520}\! \left(x , y\right) &= F_{521}\! \left(x , y\right)\\ F_{521}\! \left(x , y\right) &= F_{126}\! \left(x , y\right)^{2} F_{129}\! \left(x , y\right) F_{511}\! \left(x \right)\\ F_{522}\! \left(x \right) &= -F_{537}\! \left(x \right)+F_{523}\! \left(x \right)\\ F_{523}\! \left(x \right) &= \frac{F_{524}\! \left(x \right)}{F_{17}\! \left(x \right) F_{20}\! \left(x \right)}\\ F_{524}\! \left(x \right) &= F_{525}\! \left(x \right)\\ F_{525}\! \left(x \right) &= F_{526}\! \left(x \right)+F_{527}\! \left(x \right)\\ F_{526}\! \left(x \right) &= F_{17}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{527}\! \left(x \right) &= F_{528}\! \left(x \right)\\ F_{528}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right) F_{529}\! \left(x \right)\\ F_{529}\! \left(x \right) &= F_{530}\! \left(x \right)+F_{531}\! \left(x \right)\\ F_{530}\! \left(x \right) &= F_{17}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{531}\! \left(x \right) &= F_{532}\! \left(x \right)\\ F_{532}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{533}\! \left(x \right)\\ F_{533}\! \left(x \right) &= F_{534}\! \left(x \right)\\ F_{534}\! \left(x \right) &= F_{0}\! \left(x \right) F_{20}\! \left(x \right) F_{535}\! \left(x \right)\\ F_{535}\! \left(x \right) &= F_{522}\! \left(x \right)+F_{536}\! \left(x \right)\\ F_{536}\! \left(x \right) &= F_{516}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{537}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{536}\! \left(x \right)\\ F_{538}\! \left(x \right) &= F_{539}\! \left(x \right)\\ F_{539}\! \left(x \right) &= F_{17}\! \left(x \right) F_{18}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{540}\! \left(x \right) &= F_{541}\! \left(x \right)\\ F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\ F_{542}\! \left(x \right) &= F_{20}\! \left(x \right) F_{543}\! \left(x \right)\\ F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)+F_{551}\! \left(x \right)\\ F_{544}\! \left(x \right) &= F_{545}\! \left(x \right)+F_{547}\! \left(x \right)\\ F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)\\ F_{546}\! \left(x \right) &= F_{17}\! \left(x \right) F_{18}\! \left(x \right) F_{287}\! \left(x \right)\\ F_{547}\! \left(x \right) &= F_{548}\! \left(x \right)\\ F_{548}\! \left(x \right) &= F_{0}\! \left(x \right) F_{549}\! \left(x \right)\\ F_{549}\! \left(x \right) &= F_{541}\! \left(x \right)+F_{550}\! \left(x \right)\\ F_{550}\! \left(x \right) &= F_{0}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{551}\! \left(x \right) &= F_{552}\! \left(x \right)\\ F_{552}\! \left(x \right) &= F_{20}\! \left(x \right) F_{553}\! \left(x \right)\\ F_{553}\! \left(x \right) &= F_{554}\! \left(x \right)+F_{560}\! \left(x \right)\\ F_{554}\! \left(x \right) &= F_{555}\! \left(x \right)\\ F_{555}\! \left(x \right) &= F_{17}\! \left(x \right) F_{18}\! \left(x \right) F_{556}\! \left(x \right)\\ F_{556}\! \left(x \right) &= F_{557}\! \left(x \right)+F_{558}\! \left(x \right)\\ F_{557}\! \left(x \right) &= F_{17}\! \left(x \right) F_{287}\! \left(x \right)\\ F_{558}\! \left(x \right) &= F_{559}\! \left(x \right)\\ F_{559}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{25}\! \left(x \right) F_{371}\! \left(x \right)\\ F_{560}\! \left(x \right) &= F_{561}\! \left(x \right)\\ F_{561}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{377}\! \left(x \right) F_{510}\! \left(x \right)\\ F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)\\ F_{563}\! \left(x \right) &= F_{20}\! \left(x \right) F_{377}\! \left(x \right) F_{535}\! \left(x \right)\\ F_{564}\! \left(x \right) &= F_{565}\! \left(x \right)\\ F_{565}\! \left(x \right) &= F_{20}\! \left(x \right) F_{566}\! \left(x \right)\\ F_{566}\! \left(x \right) &= F_{499}\! \left(x \right)\\ \end{align*}\)