Av(13452, 13542, 14352, 14523, 14532, 15342, 15423, 15432, 41352, 41523, 41532)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 109, 526, 2623, 13384, 69549, 366922, 1960606, 10590042, 57731764, 317242585, ...
Implicit Equation for the Generating Function
\(\displaystyle 2 x^{4} \left(x -2\right) F \left(x \right)^{7}-x^{4} \left(5 x -13\right) F \left(x \right)^{6}+x^{2} \left(3 x^{3}-15 x^{2}+4 x -1\right) F \left(x \right)^{5}+x^{2} \left(6 x -1\right) \left(x -1\right) F \left(x \right)^{4}+x \left(x^{2}+x +2\right) F \left(x \right)^{3}-2 x \left(x +1\right) F \left(x \right)^{2}+\left(x -1\right) F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 109\)
\(\displaystyle a(6) = 526\)
\(\displaystyle a(7) = 2623\)
\(\displaystyle a(8) = 13384\)
\(\displaystyle a(9) = 69549\)
\(\displaystyle a(10) = 366922\)
\(\displaystyle a(11) = 1960606\)
\(\displaystyle a(12) = 10590042\)
\(\displaystyle a(13) = 57731764\)
\(\displaystyle a(14) = 317242585\)
\(\displaystyle a(15) = 1755416756\)
\(\displaystyle a(16) = 9772683866\)
\(\displaystyle a(17) = 54700040613\)
\(\displaystyle a(18) = 307642488298\)
\(\displaystyle a(19) = 1737696278237\)
\(\displaystyle a(20) = 9853398707117\)
\(\displaystyle a(21) = 56069212265565\)
\(\displaystyle a(22) = 320075109332352\)
\(\displaystyle a(23) = 1832520622808504\)
\(\displaystyle a(24) = 10519874964447126\)
\(\displaystyle a(25) = 60540313921441465\)
\(\displaystyle a(26) = 349196055292315927\)
\(\displaystyle a(27) = 2018420954278116984\)
\(\displaystyle a(28) = 11689793428650878076\)
\(\displaystyle a(29) = 67825998041429014895\)
\(\displaystyle a(30) = 394209604609649223579\)
\(\displaystyle a(31) = 2294839421799674898420\)
\(\displaystyle a(32) = 13379145041978304028653\)
\(\displaystyle a(33) = 78111709814796039347755\)
\(\displaystyle a(34) = 456646204329713078870458\)
\(\displaystyle a(35) = 2672924786752240688785533\)
\(\displaystyle a(36) = 15664147701916504855087561\)
\(\displaystyle a(37) = 91899327716682456658867478\)
\(\displaystyle a(38) = 539731779115927343352557144\)
\(\displaystyle a(39) = 3173074293866772844924729178\)
\(\displaystyle a(40) = 18672279753256748956474377044\)
\(\displaystyle a(41) = 109978842922137030692246034530\)
\(\displaystyle a(42) = 648331195045647687660684301305\)
\(\displaystyle a(43) = 3825103925770484565641224942167\)
\(\displaystyle a(44) = 22585612237981622823357710913786\)
\(\displaystyle a(45) = 133458931116900789738552060241816\)
\(\displaystyle a(46) = 789180573513090482357590447459865\)
\(\displaystyle a(47) = 4669870358257255358274138174224615\)
\(\displaystyle a(48) = 27651615413224335272530575658563495\)
\(\displaystyle a(49) = 163836910077085221617502317192521698\)
\(\displaystyle a(50) = 971331686718326836556677542646804865\)
\(\displaystyle a(51) = 5762057474521740338495273254612634344\)
\(\displaystyle a(52) = 34200470948534403572497789797764934524\)
\(\displaystyle a(53) = 203105581275524422019740512466447173247\)
\(\displaystyle a(54) = 1206808080605249584750389234432195102021\)
\(\displaystyle a(55) = 7174190811465752866964601628921564906382\)
\(\displaystyle a(56) = 42669565511164110078017189574367569157066\)
\(\displaystyle a(57) = 253902355832662338952257922166566311770826\)
\(\displaystyle a(58) = 1511511523757929778216388668421779019359326\)
\(\displaystyle a(59) = 9002140378040492493581648993941221999783076\)
\(\displaystyle a(60) = 53636864344553438318007386769293557334656393\)
\(\displaystyle a(61) = 319711505903972042512070682780211493173638188\)
\(\displaystyle a(62) = 1906446976896336452248914095132277565436181346\)
\(\displaystyle a(63) = 11372536517908633194213391560378412661660460739\)
\(\displaystyle a(64) = 67865790547894883908057027495764421246500594881\)
\(\displaystyle a(65) = 405135691936858356308963764012803906080668957906\)
\(\displaystyle a(66) = 2419365044070466797578216498302272113581955286263\)
\(\displaystyle a(67) = 14452703478882376585373217134514103025786112608293\)
\(\displaystyle a(68) = 86365296758851354053008476553238772966311514490523\)
\(\displaystyle a(69) = 516259208035907233284990727082119655316276194313142\)
\(\displaystyle a(70) = 3086958353098380752776313196697677160958463538251235\)
\(\displaystyle a(71) = 18463939514263341484612323389135105230081246016091926\)
\(\displaystyle a(72) = 110470160225771473831999943544227780996946733035570252\)
\(\displaystyle a(73) = 661133467159188276916558360965783574445234126516998683\)
\(\displaystyle a(74) = 3957796956642053354891754645579491132100100273659253887\)
\(\displaystyle a(75) = 23699265605559643696192915360502137923217605168200095807\)
\(\displaystyle a(76) = 141948302162151924980263298317720898092286440717839855135\)
\(\displaystyle a(77) = 850425938481850618132376159238641581986372683722416254811\)
\(\displaystyle a(78) = 5096252461336892815568724952261348040063613475376509093451\)
\(\displaystyle a(79) = 30547155650769926477920451735592164716788883033004882120490\)
\(\displaystyle a(80) = 183144296284747799079308858907881389456950557929167736902256\)
\(\displaystyle a(81) = 1098288055958253750604277442482557843243334526797636857016760\)
\(\displaystyle a(82) = 6587747198284212070418558802991831781815440573891183217315242\)
\(\displaystyle a(83) = 39523285349465704516385599234722563098243692153892473232593958\)
\(\displaystyle a(84) = 237171407111524785005117151999353007787477911587175373064675339\)
\(\displaystyle a(85) = 1423516851860635242158779818976639331939006806946547403894998192\)
\(\displaystyle a(86) = 8545781266191974932265014231798291751065620623011834579205685183\)
\(\displaystyle a(87) = 51313042922459956369410571218693001899579162521632073306254151087\)
\(\displaystyle a(88) = 308168775631054242914712865384056970228457957357996983996765771537\)
\(\displaystyle a(89) = 1851110985472458667364077302932915921672571477112560781420645492355\)
\(\displaystyle a(90) = 11121347328690562104647796816564602198925268502532795998069817971955\)
\(\displaystyle a(91) = 66828496572421041741538439973580830603379139939872262175210665775533\)
\(\displaystyle a(92) = 401646138287569928305458495426215161712776471384962020079326813872333\)
\(\displaystyle a(93) = 2414356798874670005032995070752202661226545515016105353366573914558088\)
\(\displaystyle a(94) = 14515554960846079887537475561309565013646302057918785532722651153466170\)
\(\displaystyle a(95) = 87284798123629907574954830272479142695547042329152478239758526460361915\)
\(\displaystyle a(96) = 524946251880500121491804729823639155999901727810028819219983690432673359\)
\(\displaystyle a(97) = 3157627235434528494057274835771767766946714562863260652490843196399522358\)
\(\displaystyle a(98) = 18996572506327611558165712386640873524506949569129134212666755487109190736\)
\(\displaystyle a(99) = 114302737197230234034689566195136218077041712989884082585876425912212666820\)
\(\displaystyle a(100) = 687865715533277916256584073586049566655794045713277383967836366149229921610\)
\(\displaystyle a(101) = 4140140231481855067806068804291196510953159944238906304178614858523180566581\)
\(\displaystyle a(102) = 24922381093238401584719021370395453418129745317891031306320584777481057567155\)
\(\displaystyle a(103) = 150046504961315889053848872709890030886922906954931803353098323690475349387384\)
\(\displaystyle a(104) = 903489098427651246114201287282247375229375574458107747177109850251398214448308\)
\(\displaystyle a(105) = 5441009406076774884705768898781801350990764803228054727030382151340930848593572\)
\(\displaystyle a(106) = 32771358274112065878586033108550747391518797027733592796994113756278341026331602\)
\(\displaystyle a(107) = 197408897047280706955130761130498206090732294901447049264899945873372686219193177\)
\(\displaystyle a(108) = 1189310509997318810258204300134873852056053523617117116118671616341284425472362059\)
\(\displaystyle a(109) = 7166036486897710594289347676243253898226041049489728218809168518484634361981580843\)
\(\displaystyle a(110) = 43183416008650380022034415114496378008036138394901558092760835262069942729940415794\)
\(\displaystyle a{\left(n + 111 \right)} = - \frac{1012372830448699625732551491 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) a{\left(n \right)}}{866996971464348925952 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{6603 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(85564287821272831706603951 n + 202877442506904387007329116\right) a{\left(n + 1 \right)}}{19940930343680025296896 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(1488134793214107657973977476453 n^{2} + 42092139139772669356706613137103 n + 185474911586898449115978420482590\right) a{\left(n + 2 \right)}}{19940930343680025296896 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(155338360304487707111895879334668 n^{3} + 2833642394045051735719257551609718 n^{2} + 16964923358430691513279586433880973 n + 33003596836554754348796991548327358\right) a{\left(n + 3 \right)}}{29911395515520037945344 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(n + 4\right) \left(n + 5\right) \left(327039799581252198891368793844253 n^{4} - 6547564394877901501308146997723145 n^{3} - 222430562653974945424363176325647420 n^{2} - 1713204910549210650438128409158778360 n - 4107275336979520642210275243915434028\right) a{\left(n + 4 \right)}}{89734186546560113836032 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(n + 5\right) \left(251091136719865128017869093212169817 n^{5} + 9500083951027115435139925787261145258 n^{4} + 142393327189644906386947398765990094195 n^{3} + 1057371595252934296725607304472080607690 n^{2} + 3891611499119823253918962298955374879968 n + 5681616937827230589352651006375433980032\right) a{\left(n + 5 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(8361511 n^{2} + 1827677177 n + 99875758350\right) a{\left(n + 110 \right)}}{58374 \left(n + 112\right) \left(2 n + 223\right)} + \frac{\left(147862404100 n^{4} + 63252267330204 n^{3} + 10144505395505399 n^{2} + 722946167731721529 n + 19315798674260242104\right) a{\left(n + 109 \right)}}{14943744 \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(99251294954708 n^{5} + 52467061109564336 n^{4} + 11091284401874427611 n^{3} + 1172001360678335892276 n^{2} + 61904469606616869613728 n + 1307524306052044331789760\right) a{\left(n + 108 \right)}}{239099904 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(29577463817534616 n^{6} + 19167464009360257528 n^{5} + 5174298301541182686320 n^{4} + 744789398900736423593075 n^{3} + 60288794057512682822631124 n^{2} + 2602189812912177369390963237 n + 46787790106589023248922126620\right) a{\left(n + 107 \right)}}{3825598464 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(4935623667832629560 n^{6} + 3102575996462353041416 n^{5} + 812389964529206712958560 n^{4} + 113415989037038252614603435 n^{3} + 8903712511094762078824705165 n^{2} + 372671991829591350476832062304 n + 6497202728293611011399927743740\right) a{\left(n + 106 \right)}}{30604787712 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(246189849658697825476 n^{6} + 159842689341780643673188 n^{5} + 43209654924665601118657155 n^{4} + 6225313453881781877383571105 n^{3} + 504166050458589877815089426414 n^{2} + 21762495243123125766919623077592 n + 391174047923903144730926018971740\right) a{\left(n + 105 \right)}}{122419150848 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(101886534181549110101492 n^{6} + 63969124930642014909570204 n^{5} + 16734300094737543145347442715 n^{4} + 2334739470168060042445777794765 n^{3} + 183225983753779699494276007990733 n^{2} + 7668843924227165039070887760902301 n + 133738731746116635056753517570514800\right) a{\left(n + 104 \right)}}{1469029810176 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(3379657997594883462368720 n^{6} + 2067558170952919032484776696 n^{5} + 527015559742589038192277194370 n^{4} + 71644207287933900532952007219405 n^{3} + 5478425905246533879624284239905905 n^{2} + 223421602947984025579919397437098224 n + 3796476275711870492451817195300175640\right) a{\left(n + 103 \right)}}{11752238481408 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(327339072950536159078506268 n^{6} + 201574407546988432513428390672 n^{5} + 51716113771426736929096757837395 n^{4} + 7075862388675448901953132572515925 n^{3} + 544527422284596485138470206476074522 n^{2} + 22347208427640423511092892734979110138 n + 382102633865005324401820853686962931380\right) a{\left(n + 102 \right)}}{47008953925632 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(5393480224255843804652287484 n^{6} + 3266785183843612377049808275302 n^{5} + 824433111124194747789455826527570 n^{4} + 110964306733879711480085547109353645 n^{3} + 8400936378428433038654155388963880431 n^{2} + 339206738711342398748644478795422684548 n + 5706677321854598758891808769438745121040\right) a{\left(n + 101 \right)}}{94017907851264 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(45363912656661295257031967724 n^{6} + 27439549178516212557926208668838 n^{5} + 6914721297070442331253463239408190 n^{4} + 929211175746370103914526798606153940 n^{3} + 70229699162033487522451569088340902801 n^{2} + 2830549920449006418355662195217239633177 n + 47528625593022887536695032616024264450060\right) a{\left(n + 100 \right)}}{125357210468352 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(2669009352096263107144184880736 n^{6} + 1589546973716027113715241118452766 n^{5} + 394417592100419282508849675746950735 n^{4} + 52192550975377691357942977037953959360 n^{3} + 3884665469649003272298691897011207976534 n^{2} + 154194007337021452612989337698957764222909 n + 2549998187613702470428842418358124776358000\right) a{\left(n + 99 \right)}}{501428841873408 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(11784413011810325399451541888096 n^{6} + 6857086310557936568713661846265742 n^{5} + 1661970050259090604829227398162868255 n^{4} + 214764196780647816627929683095673087115 n^{3} + 15605305456898392978502392653328407795964 n^{2} + 604537010140101095597983841405896478500608 n + 9754288294482929106532944176184233628711300\right) a{\left(n + 98 \right)}}{2005715367493632 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(3671709112512556379471073725563252 n^{6} + 2145905255385318382936224771348398622 n^{5} + 522513364180092407919943935630551758300 n^{4} + 67848327283760164399882194271149949733505 n^{3} + 4955185337502425898564964995884216134091488 n^{2} + 192990626058858767381961380259700447046847543 n + 3131543536827449628425176532812726126023591330\right) a{\left(n + 97 \right)}}{24068584409923584 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(20579068768872722184323652940717096 n^{6} + 11824560211558911179774550179920956554 n^{5} + 2830113194364364821680584047565554597655 n^{4} + 361151250068595882318846210343104316669195 n^{3} + 25915619460887278186340004204863981721230044 n^{2} + 991503162986623090835903620064585430909518016 n + 15800585664545872426211426105900809250224192020\right) a{\left(n + 96 \right)}}{32091445879898112 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(373741261209864906675748748048833388 n^{6} + 7687467669619870851106725822531429519 n^{5} - 45561861844941619270538427326636454715 n^{4} - 2533818193787689161537711606203716154565 n^{3} - 26863823072108723139931267786529616378253 n^{2} - 120673472823352625738582764857389875205694 n - 202859310696231694384667862056966736514680\right) a{\left(n + 6 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(406672348234020596446011583248235904 n^{6} + 246811903034066410981796071666513004244 n^{5} + 62274395182864109369528844843947941037240 n^{4} + 8363196572177753459712381074007615876055215 n^{3} + 630600733099303577624790512421777225760288331 n^{2} + 25316230486092360442029035732206772497082667786 n + 422819443768272333730356435612905498909864906880\right) a{\left(n + 95 \right)}}{770194701117554688 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(4705422427048562880788889057963612404 n^{6} + 2705505690899058077719659697083484819076 n^{5} + 647931263954643175147443739339745701100055 n^{4} + 82729698746691119295268510455532810166364315 n^{3} + 5939921439402251771633055929504683526120253436 n^{2} + 227391072583554336074598561351092013885479443114 n + 3626099392800930571856296727629686510887298606660\right) a{\left(n + 94 \right)}}{1026926268156739584 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(15802631850012437546289432565536971777 n^{6} + 481518523380401194905540514336478977431 n^{5} + 517350792317396461234967196139002521105 n^{4} - 144218485134740721399521778421427212885455 n^{3} - 2188057262107682900928797695776664707436762 n^{2} - 13025523914347273074656540863836930698051856 n - 28491627622738470491751144377683527362450880\right) a{\left(n + 8 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(22372796789226936248020947167456599850 n^{6} + 1235314333356107877289960256136877915923 n^{5} + 28166046832492983355756806455178705553880 n^{4} + 339727719997924095063426450839895194697225 n^{3} + 2287592715483160562326357447919621284162310 n^{2} + 8157260772683678157620123293947518323927812 n + 12038503245466341648899385330343946621529120\right) a{\left(n + 7 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(57722310298081658300140860246709548348 n^{6} + 32762450942139717934018486189170465197016 n^{5} + 7751358962830236752624333309111241320845635 n^{4} + 978474217846480437808059167669869647310015205 n^{3} + 69503400310215348204145453527654805986976235037 n^{2} + 2633997023125271725386697862896909262561544534199 n + 41606227638620708028681631390469112709125986533170\right) a{\left(n + 93 \right)}}{2053852536313479168 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{5 \left(134345880287449879998305735874584093888 n^{6} + 75708788642623798422690708632492096784488 n^{5} + 17780143496271635585512009716032215084052706 n^{4} + 2227400579360955689103256975334729388431769309 n^{3} + 156984348541789691496044174582280972274497002992 n^{2} + 5901773766024601662171849889224242687824167627679 n + 92462140855780570798909780446744058881418983305706\right) a{\left(n + 92 \right)}}{4107705072626958336 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(206299596385898861643655702896851627708 n^{6} + 21408345384912728564242564585658368366385 n^{5} + 833743866170807570933068257352184992224615 n^{4} + 16314628686412670736818875911774428196186305 n^{3} + 172688582922928719272719792720467388202071477 n^{2} + 947896194807924398882751654215666732611590830 n + 2121828592805448433479419182710144325628687160\right) a{\left(n + 10 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(546003749929399483334091516302106593599 n^{6} + 36275004646176940827872979878565237996089 n^{5} + 996667437845203741312240952182797181966375 n^{4} + 14508630577849080204583610635777464920564895 n^{3} + 118100296707850661573298423474284826743801866 n^{2} + 509943456257434824497690651955365117450501176 n + 912857733340500868176463948403271744345629280\right) a{\left(n + 9 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(4867267040191460130101107779891502775444 n^{6} + 2566556422609973038385244230200216037588592 n^{5} + 562744529459028424895329234235886188137191545 n^{4} + 65657018323824141171863572537986022827097584945 n^{3} + 4298074053795029567358712445088703729189856074241 n^{2} + 149636334542378080404245486353010071743531544070493 n + 2163761804241091656973171737376502730950015054841000\right) a{\left(n + 91 \right)}}{16430820290507833344 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(40694911928429796021926962283122668914915 n^{6} + 3136015933574217897437160792439592857705179 n^{5} + 99920934534748187931135414818899121306528525 n^{4} + 1686264574086602283005909939519924089786947705 n^{3} + 15905955721265682941917178843301849204057761960 n^{2} + 79546302364029748032257937079688821597958107476 n + 164829424760809416325138688402251801028217711120\right) a{\left(n + 11 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(129396993711051416766076466488024191688403 n^{6} + 12103952176791011010977340092354427608547435 n^{5} + 464427209064582307065340167375359699212240745 n^{4} + 9387583813492299427273275651856497796454417865 n^{3} + 105667565481916704594201518646433867084270051052 n^{2} + 628990532091409716088510298844616920123811057380 n + 1548612413439967068141235435684104959477416967760\right) a{\left(n + 12 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(278626118543690420515440560669217251139995 n^{6} + 23359707760762129219378795630229636224284513 n^{5} + 802113445031503805604077581382496465533763380 n^{4} + 14412644491162720183159386193532853915305527545 n^{3} + 142480941621718826190091939713400463091507953705 n^{2} + 731032410494781082134295720966885437555795309222 n + 1507981165171861897470699595977039344911738580640\right) a{\left(n + 13 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(1197265693541179458329535089383744863901324 n^{6} + 639460554184544939239233443219857256516511264 n^{5} + 142285111878167888022416119168309508891314474885 n^{4} + 16882434543061796526150559338917359556155795991310 n^{3} + 1126579159967803146232544311079728237649205990678511 n^{2} + 40087845870846062474229484526790251412870549985153806 n + 594258073133003943296735133211698151771336041560223780\right) a{\left(n + 90 \right)}}{197169843486094000128 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(2228481783955231931757983395029935748438775 n^{6} + 364988894563222573530339496584166805035741113 n^{5} + 21629332879016223314600346295691066896762720585 n^{4} + 633275566849342769701819639553963674767182268795 n^{3} + 9933459839512844202881511570065007848168494659280 n^{2} + 80309287288299338581978873173349273105022390711532 n + 263710537410991232178656312598734415410741292884160\right) a{\left(n + 15 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(2414466317397018082831420991435584439001367 n^{6} + 246103860661117647427174833318673697804902089 n^{5} + 10365052209008333777094661596981202192875582160 n^{4} + 231239297463990116486710731109867864317193552485 n^{3} + 2885365357900368975599992972979646042048735782173 n^{2} + 19108436304561564693297260821932083236194688149126 n + 52504035423690624356835325423921751813997194556960\right) a{\left(n + 14 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(7337007581392889825979674462680656377718124 n^{6} + 3851607542007838390630487976010033701670662968 n^{5} + 842227046168333928985961504027072763362927871845 n^{4} + 98194350860514792421671628276321273610017108552730 n^{3} + 6437743174071478495554288836734235057762604394491951 n^{2} + 225031034618290802023470479219302285141832730531871382 n + 3276409412525418914850150253187728757562804517321497960\right) a{\left(n + 89 \right)}}{262893124648125333504 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(36261593758140081911835983825530086757389460 n^{6} + 18289399200249667216876915515171380782854438972 n^{5} + 3836314049101931552585986825383726986440894103665 n^{4} + 428281426183027487290029753219514481959316448017100 n^{3} + 26834065108839757987193978829481053452424304141715395 n^{2} + 894473890342082027783406627700186600478937595582370448 n + 12389493367861705492099687999937900595396609456157221120\right) a{\left(n + 88 \right)}}{1577358747888752001024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(103883119988914080292269825787308138060696289 n^{6} + 11695729851498968606682074768298591501695530017 n^{5} + 544931523488747234139345493406737587299856630175 n^{4} + 13466366805280556391057817989832934287483156096635 n^{3} + 186333719828190504025874992357833776115890434697896 n^{2} + 1369798833317124146596327257728923821242280824298828 n + 4181947186883632066776951792781015769863270127255520\right) a{\left(n + 16 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(215460408936492544493763073364449998761507351 n^{6} + 26443582194913781812190532057545921235044748771 n^{5} + 1342192902958076880186877703161201911716101588590 n^{4} + 36109500104819769302683892566653799900445753805275 n^{3} + 543620321281158175885167817410898746919861903711399 n^{2} + 4345631492144188404018579428873788541525245522242934 n + 14419603960232750505229783874957271072651362536174200\right) a{\left(n + 18 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(303789943867933505184799948693300750082391001 n^{6} + 38496137969850759236752243838259950006512634163 n^{5} + 2012002552532090669790799652850592891610184855475 n^{4} + 55596421870724597362462605615750011855981188646025 n^{3} + 857593594195331357865361382756233786071158551848604 n^{2} + 7007939592242705565306744268604686426116777882440172 n + 23717439693028222795669651138272247956846142492227840\right) a{\left(n + 17 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(318933213407344102247202258737013528676313972 n^{6} + 43570275090460839471679588286018231236038826656 n^{5} + 2459541889356845490432875439736865576803097783445 n^{4} + 73534696990140093008731205170275903955948268190875 n^{3} + 1229348081031987262520120430815667883508725384057348 n^{2} + 10904895113236799245755768789944031064323555140207374 n + 40122698029729981536061714260879738816334525899916830\right) a{\left(n + 19 \right)}}{67300639909920085377024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(574494386877991700080536585977945587791082048 n^{6} + 293420192851708260240821344772070477563076490470 n^{5} + 62403632785283186582593919766883302026125780861645 n^{4} + 7073605500669595263952902366264954977928686910980190 n^{3} + 450703516870546143618472558237816723014913016989933807 n^{2} + 15304507086110794741188958815370706890966095211911196260 n + 216370240754674611841499917769006137388668026516224793540\right) a{\left(n + 87 \right)}}{1577358747888752001024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(749783783918009996789392136718818564789318952 n^{6} + 368002586888425419923097955174036236707305435552 n^{5} + 75047920897469913091877921297137964631547950959560 n^{4} + 8137118021857999857126165886599009512173888068796065 n^{3} + 494545643311765236874086342576304181519786753901419363 n^{2} + 15967101424904586521615001390900298654194590790336392663 n + 213837014692982097573571711378233459105946117398356839605\right) a{\left(n + 86 \right)}}{525786249296250667008 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(1513474636416755324636409835318095641288322075 n^{6} + 171954335720906188607119112730479781057225833447 n^{5} + 7694723891411731466127670836798762664265734302445 n^{4} + 168287692508150420571525247951365955243411635513085 n^{3} + 1751252311345858580014046676791120854489113347188160 n^{2} + 5829845682586986303424623871236039043404586009655028 n - 15366799594841064727688258014558820284186602088838880\right) a{\left(n + 20 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(20950858640689596573780597614735142141432740428 n^{6} + 12143517503588083541887559677146930235196615856552 n^{5} + 2891295814621067787001190438321038638831729458122825 n^{4} + 362997398859917049349193674789113856983499972860485250 n^{3} + 25398318560074561865962468002504732053903825138270699767 n^{2} + 940478122692259059689670766189118838351051402870808252818 n + 14415943923581144367269385813181781149373069556143544350280\right) a{\left(n + 85 \right)}}{12618869983110016008192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(46208840745422971543647328929831817852995549901 n^{6} + 7759120650278070659159697125944897659297644782407 n^{5} + 532288404340484835749902853291144407768666924517645 n^{4} + 19174613775469019433312895076443367873118039586636945 n^{3} + 383649652799033160183919854195260599702145931306435294 n^{2} + 4051065839575563272605888330174571940712772518199787968 n + 17665049950972365520869632572269701911409886163261853280\right) a{\left(n + 22 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(53581244420235961113327249026578037040258062735 n^{6} + 7983756115653727306770351570565110798227470440942 n^{5} + 490943686352451178234329609937637898778025178954020 n^{4} + 15976306093063077368484687182375991971704971843939660 n^{3} + 290566938653976587019665254810257284317477527473347145 n^{2} + 2803233104756515755540021489017017905940258422589739418 n + 11216237611193217880292940436455545021511148283922143760\right) a{\left(n + 21 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(260582751432386507747533123111210996244365688600 n^{6} + 101905618344606767404850893885092643027873411587366 n^{5} + 15369472959590534787442244899523372195981072306024645 n^{4} + 1062396221446384772389590602398994836544730248167538340 n^{3} + 26435452210800037866428488809379620476681170488898016525 n^{2} - 438670051244128522308078990472934673159424354141653635436 n - 24253127324605690177777005979032424006649737475633933909340\right) a{\left(n + 83 \right)}}{25237739966220032016384 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(432794684036492056938771132212544950606742486493 n^{6} + 78891468193498303058187908047062852429374809374009 n^{5} + 5729046662867491263959821607857041582070118598011075 n^{4} + 214776860571556411288090880438993588620242456184934675 n^{3} + 4414664816609791620649824311887722611252305963460000112 n^{2} + 47365882018883157435774748408925668378506463023278086996 n + 207722853157117876314913962045827570679132561472765115280\right) a{\left(n + 25 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(558140201053735596084471416882833235642098498396 n^{6} + 282456148284477114944414879467181221777467186455172 n^{5} + 59562808297261487512025592085510449777244050062211175 n^{4} + 6699224888239304552877733445428989373575297232713867960 n^{3} + 423859416785897773966233734143562485423901134189575970009 n^{2} + 14303488951723613892195355122465529151541577232177467917468 n + 201128568179517765314197505059742474629698309627123930692820\right) a{\left(n + 84 \right)}}{25237739966220032016384 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(791026202826672369933050645354691088041185679383 n^{6} + 129227371071148125834999387490207457181233897682333 n^{5} + 8672553960802574559557282607133098949315047647355875 n^{4} + 306989596878581934059513847204659538999159341573062995 n^{3} + 6058569663824636283389622387723939153373697846118502502 n^{2} + 63310017215220700663627053241007969656082507978337826752 n + 274004710327652046172553106644768971987911219678086447040\right) a{\left(n + 23 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(1725865705772701879284731729653770175779499886508 n^{6} + 452682401947070525476277759210674932770250151902114 n^{5} + 43851562823660763939737712827829548350952609825196085 n^{4} + 2120202922676343258677398526516326613922817381076340500 n^{3} + 55280612259058019610467361173813183295253140887358422687 n^{2} + 746510098536879108903130325051102211491451345131486677906 n + 4110504017711226749579189445248413609022874707029790009160\right) a{\left(n + 27 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{5 \left(2297213701289360386607383263582467131029717683267 n^{6} + 525792303658455764059862219169535441589339570514405 n^{5} + 46007002568870179539579706171109354958571513161811613 n^{4} + 2040691789979019441471541795960927520870739627689941119 n^{3} + 49240235464781608282549875860124741053037621469852771880 n^{2} + 618839583412514442703154801691291204754464849001492564020 n + 3184023356346013011657375377498839048873807726717693780656\right) a{\left(n + 26 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(2382277660408161509938435538510288279896220284711 n^{6} + 431278252910313101280845174397808329375145309556451 n^{5} + 31776104906474451274031196872996982426171618045770335 n^{4} + 1226858033204534131776022182265318071280749414879068085 n^{3} + 26282428789957002662605998845353455522550480561664183314 n^{2} + 297014953416213406838037315045469796617924758360511192704 n + 1386062572768987184138637827824532813567093317972281369120\right) a{\left(n + 24 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(9877929108202035889755389403710188106122978137658 n^{6} + 930051896318657223114035931675049978297512330972554 n^{5} + 11231568151285359758849173823996190944061332817778265 n^{4} - 1705162873426249760416565032075703699851991293952794680 n^{3} - 82986894272001318345791634831697359554772037423296648963 n^{2} - 1488800233187681922631729165883012291374688275866538287434 n - 9713510132820099899390000242840288503123153693968061903240\right) a{\left(n + 28 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(17900300553120125357571027336717716931575268070964 n^{6} + 9040130614509284625277116544880583025100616635296200 n^{5} + 1901139673919593096681428957619749699902677873090073945 n^{4} + 213107589182225969238656651159683434811883572562251388730 n^{3} + 13429602272618719671600312611446866303537566993070740517731 n^{2} + 451120199232016295734407538819028535090721084296094219654830 n + 6310809627672335000264700363992582980107926364833094297575280\right) a{\left(n + 82 \right)}}{50475479932440064032768 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(22612621141068763004496720418770750162845112559280 n^{6} + 11109621419127778292636591060355223682401865584392332 n^{5} + 2274211872801520096705915007455451260996838466035788495 n^{4} + 248286791661412713700119803461716672310292585732171933000 n^{3} + 15247159823451096206067905675094735720875584170783228216795 n^{2} + 499356838683105907186806433246190795893122041983554364094018 n + 6814087753743761892728561932131852463113494873383991193466680\right) a{\left(n + 81 \right)}}{16825159977480021344256 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(30515182905990874105539443101986823111398630843406 n^{6} + 14166633683695103260984060011145340804701951920550188 n^{5} + 2738642364019670654696415907034461802477851608620198785 n^{4} + 282170054507783403287015031984324182816035620972515756340 n^{3} + 16341569401989582357311882412827063663701616633577205351399 n^{2} + 504351943939465217874436631604039800052202525921852290497502 n + 6480241167168632833039099458442032769037911249627339743438300\right) a{\left(n + 80 \right)}}{50475479932440064032768 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(128721848238909173879462590951160594995493436241435 n^{6} + 15424086708812932234075635139629228280409619081446442 n^{5} + 568336131930103436446894459535753221626338515467158920 n^{4} - 1131573491658714553486432946519078248841166191889288000 n^{3} - 570325497386038226420890448149242973315279949419051366295 n^{2} - 13483840044248090122595425918066399686235881952278242619582 n - 101159927817956755688763567451839217138526568516560793677880\right) a{\left(n + 29 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(149901231240798887260143702462499597137176745929709 n^{6} + 72233867329392909347066197828055985434481261015507598 n^{5} + 14499977946771093076999375757804976338983783657154486775 n^{4} + 1552021717666793087484953312116555709198677980460513411650 n^{3} + 93424138363600005439631431702843743949012514417879542991526 n^{2} + 2998682093566432726339702575394930456770098132305112710397822 n + 40096332806680186788892568425664768113699147383770307805486620\right) a{\left(n + 79 \right)}}{16825159977480021344256 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{5 \left(168760371583803324833230321752609331336452019369657 n^{6} + 28500610051386653534924821811871086352320719445487416 n^{5} + 1971452128981315426062111182836081372443108298332691078 n^{4} + 71080439011484929686832428506062329851116803083354687398 n^{3} + 1395833318708042535402753866628378263154693254143653680005 n^{2} + 13927084416494601035378900812287479106493803014555031104574 n + 53396532918504230840398510746563514136423277481462826886808\right) a{\left(n + 31 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(278798799821112937481819516751481365741049036794854 n^{6} + 47934630708729666560722102545294362622900763445319657 n^{5} + 3448777273673740674299256209871604607856908750103053810 n^{4} + 133049557815923869442954128047975483597256190892234169695 n^{3} + 2906088908454125922995541760668535133623775734938763007276 n^{2} + 34113133541138882716547049042951090186576185996869789650828 n + 168309666270704440916377272717815733911960401235749501134720\right) a{\left(n + 30 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(403822503903430793470681499420869433794241655823745 n^{6} + 193522661760061368144473069716010887645931877445766397 n^{5} + 38533417464520433308260794111770703405036333788749093380 n^{4} + 4081612833092396075604117410159235534841465088542921479900 n^{3} + 242626044906502793861214415799766060377062820109784017310745 n^{2} + 7675682098849668212196877800643753222263633095315207530919313 n + 100980276369059359896073658068205180859760633227536965356910260\right) a{\left(n + 77 \right)}}{100950959864880128065536 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(948691075994047687690310362889856964748187563943857 n^{6} + 162923955916050640292758928671000081856726749595368867 n^{5} + 11352095697093192083927534997003839785297985526796463305 n^{4} + 406073270387795012844891443999925040721560697926955226945 n^{3} + 7700423390829268189940330188203226998583756792625137174158 n^{2} + 70117523204864167487254546356870773333346774352791480013868 n + 209372514393102547506046080457465105134412710762997803109800\right) a{\left(n + 32 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(1619807276292178762730635793017302977869265884146926 n^{6} + 766585057770674876257723247930371110329175104540742850 n^{5} + 151165927326792207663247227102750603498371777774029878485 n^{4} + 15898366701798526264079611964975074685385053074575030954850 n^{3} + 940542620962222713254777201308150546812953266752334759718009 n^{2} + 29676084498745121965680674953434723414217960744990212739419040 n + 390144512611188091562900149946620043512448118567687428367118800\right) a{\left(n + 78 \right)}}{67300639909920085377024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(3105822232418465765315828379600124564359274026255409 n^{6} + 850013430110262273949059117429488912415236047032401988 n^{5} + 94288495385146665822390550055695230997476716247596560975 n^{4} + 5456398342991105419885711656496336499013504799949603956140 n^{3} + 174444576983294576556573997083718484811172608604505743892656 n^{2} + 2930325232156540662082326127947154970337181849555038452868912 n + 20253155603330902925559025152306253341202333877486214447358440\right) a{\left(n + 35 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(15064415573811035240702553021362968626747575148816958 n^{6} + 2862715059428407824039386858790211743682318808216930781 n^{5} + 226026610494122512202475254433654658959447891296054649775 n^{4} + 9487105670820625160905656827081578799052378993583770511365 n^{3} + 223159740739751406108881379402972880769666154623094735040507 n^{2} + 2787582439888338388234016913827217647635946678710438638552894 n + 14435944225623179537498423393820469965913179933413330557732200\right) a{\left(n + 33 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(15424354698993509521215767479390139046951441591192569 n^{6} + 6906759953681596300927003158061545743759098151448578768 n^{5} + 1288164808979650013433017250371418124535557991000036441415 n^{4} + 128089799163613768320994954103720316874205270758022885779420 n^{3} + 7161988765818412853993999306747213612937073888634521572330106 n^{2} + 213506362612871635697885945200461982525463366113961369332190082 n + 2651196121797723327411923567336916651490893431854014350177769960\right) a{\left(n + 74 \right)}}{67300639909920085377024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(29705520729398791690041180759366392106518672889094882 n^{6} + 13539190147346338043254514071430930417869662541542317730 n^{5} + 2571235740259891238587826805408111087954646829019449471395 n^{4} + 260431270098738837196784221758871168371760010015368569426880 n^{3} + 14837769141080890409035850368102522134966579248137159847426203 n^{2} + 450861368383792703870275435476482962761319139974866359296047470 n + 5708275823424971987489865592838720763721077977183091570131511240\right) a{\left(n + 75 \right)}}{134601279819840170754048 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(48789290252643493083286233292255211216146884187579508 n^{6} + 9502930430377583425270389228644449805811627933217449852 n^{5} + 767266388691957762035197031371338464562769830533710963145 n^{4} + 32840860413577941340144487925036837275609823807975081701490 n^{3} + 785045913288234287430966550771622273909894525404981329837467 n^{2} + 9922596666822919899821027635505091979252838541279488138362938 n + 51706453970566297401086230879181213614679283649407974581190040\right) a{\left(n + 34 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(54928004536237272538323234792595409195454921636229402 n^{6} + 25360704345364007023242669636797598396094484587468615962 n^{5} + 4878235810836160384873350651267406444114495266072901277815 n^{4} + 500391347103312005308072745915155171393065194382772058166900 n^{3} + 28868727698639549683811223988515735861036224304491151370880383 n^{2} + 888165809240590311611213727857950279282653466669839055108311378 n + 11384147480878244760583012894348152003354761346397568229289350360\right) a{\left(n + 76 \right)}}{403803839459520512262144 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(86428490245325949415000056819433525148873806621481924 n^{6} + 38291321209781345040298561927733882741409343107513935661 n^{5} + 7067475183915030441863396429673870271052604551272789676405 n^{4} + 695602985977985871541253248267328575149590314631393261224315 n^{3} + 38505097495541529758883477544397639601687648749737879057521701 n^{2} + 1136615120156762024583831999875993198267707192857587913235386014 n + 13977824037008261290590101016477791772058758176487561038825704860\right) a{\left(n + 73 \right)}}{67300639909920085377024 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(135206640019748679998564457316155444564339069852191915 n^{6} + 28500874835733912541180435813509039205129718817516400146 n^{5} + 2499827936953068033945527845154401839226874341587444494945 n^{4} + 116762859764672069260492310044151079232698948029612865105330 n^{3} + 3062656257981815167828566720129951477049896935472056798684840 n^{2} + 42765079046045604671043233492869961751413866594608661397509704 n + 248300808916203163279720422821625026942628071680959980380720980\right) a{\left(n + 36 \right)}}{403803839459520512262144 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(146194387244977906183566241799509469167678953116719063 n^{6} + 122739167773837234566370643706544209704748130472770250604 n^{5} + 31826377364890881772735343060205369078319744014764926724575 n^{4} + 3900520099056274999681889694640665834165065478191933271863820 n^{3} + 251758362047835278494862343161673613170650224055158339579732822 n^{2} + 8313728435909720179634246027840572022542809682415713428623732556 n + 111160187317544369559045911917900543430572846172994703744585001280\right) a{\left(n + 68 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(148676022409417209177269740483398291687138164924512945 n^{6} + 32106459815721661953532743241179438989900633240562411284 n^{5} + 2881690416211678682659196736977502478208089462794741582485 n^{4} + 137560988439451371721330369776966159238152860306584061383580 n^{3} + 3682288522926118229998148285625664162243747918867427454114930 n^{2} + 52386744710159835655998746838048292825780143638505085490890376 n + 309308492789017641834283025828660115598569345951133093349297520\right) a{\left(n + 37 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(359901232551772486352796515993703516044104302057790623 n^{6} + 157490990794158268688070899111246061248893713047275830885 n^{5} + 28710613944496574784151100129750355722162344879739505376865 n^{4} + 2790979136984688891285142801211962617253801039120181264848215 n^{3} + 152589535917185386777124756122143265957424226182018950044998632 n^{2} + 4448626978513874181725619091748783031213471056089446153548309340 n + 54032254007126759891897307466527191801770891772375308181924375520\right) a{\left(n + 72 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(452129369756468551833860398000075842579963169125290522 n^{6} + 102342974516063067696528924715072851191814907017106002357 n^{5} + 9664645679384238052611189969132738498806382630836906794730 n^{4} + 487394172110839824666700979833713558474270826044595078987755 n^{3} + 13844841994780564007556521783716622557626067738949002734327968 n^{2} + 210042392812410450126546998513133088321210469756753735194331988 n + 1329681479364202193302952654050095550504934424499997122067855160\right) a{\left(n + 38 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(755000183687778181849373764198748570611442618617997432 n^{6} + 325360818600329471012999897848125339905083414738783284015 n^{5} + 58419308848744928605194337799598174849480372462074915801465 n^{4} + 5594108882567503354223663275016638681574460896708930347401615 n^{3} + 301309567231598037020293404719048836375116797543491315258576823 n^{2} + 8655237175491600338846199406680373745884432881307496242322336730 n + 103590375291157469949512016850947856523387463495387411225896067120\right) a{\left(n + 71 \right)}}{403803839459520512262144 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(844279633461300669831607872507026750496399556456439100 n^{6} + 194664711221522016861124245666115594509961447332078728872 n^{5} + 18690362569401514832301609096609964260444491175612287182835 n^{4} + 956472580659553231917384769587064552494549184569459375604050 n^{3} + 27514310972191019595355910296200639806771378446001668310992045 n^{2} + 421826423908826328889605724598113777164540875706416835700763618 n + 2692573434069054713389196584329976298687607436023202416312853320\right) a{\left(n + 39 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(1620096788357676059973377355514024047088691738083446187 n^{6} + 383256453590962737013028177988942574745740966241181671129 n^{5} + 37723502653344909095852766442294929765260170634186059984465 n^{4} + 1977342837278946624010907550242414958146413286021134158654635 n^{3} + 58207852292053194024888620413378288061341017705320776711594348 n^{2} + 912304035555298331766816832468642788024481141886873757644905556 n + 5946916947370103210532375933377513579018191750538630147493288240\right) a{\left(n + 40 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(1684849227440461499965659694723274971544100897812795005 n^{6} - 257904876184625139404391444077982813020193159146360700993 n^{5} - 126910593030676234360443904524452285711796603793562461094405 n^{4} - 14722052667707058457112327560692543607871233540742683112085795 n^{3} - 784987931362190155816024645186443300921739536546317190805098860 n^{2} - 20320077019280210577218207709174605247835002608693396987252283432 n - 207520442679202959324213663881455688992015127627904284988225288360\right) a{\left(n + 50 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{5 \left(2107292794406354559712600382490836675197291807412324893 n^{6} + 871376374870903093291443136390226224171301543557634946363 n^{5} + 150077995778039290757534654039540609652428735069546240834140 n^{4} + 13780713365050825792176326660868203993589031655960923945335207 n^{3} + 711535635798172853115253425791226743100842776786999660110982723 n^{2} + 19587140904459298428017039253997776805393840143966999470671283514 n + 224588637375969950359478826323929853198366811616310090436396010632\right) a{\left(n + 67 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(3011817779408656861728827624423250405697660422785668973 n^{6} + 732231243294361616910791698925189292137854189087627338287 n^{5} + 74204178769752951007926614498001225466785658542931963919395 n^{4} + 4012254792318436044201363087134386286080254905057300691779645 n^{3} + 122084932995314554877096025824660989718309776108593949940383272 n^{2} + 1982142578434090036311341949721383820615281266534738092834702508 n + 13415493185376245930239499566734972636652167877931888662378366080\right) a{\left(n + 41 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(7017850207872159475943243705397133735929097467239007252 n^{6} + 2792591470093950769255670669732843924272548411431771565318 n^{5} + 463004929723278523934862630576529128336221788742044006389285 n^{4} + 40940045269050423158098445234887783308128699722185497419595800 n^{3} + 2036193085092031915455708912810344887738988799949418929709575683 n^{2} + 54009901858928891800463981295773358919999261017390206329037320382 n + 596899619650274405688035903449790134830701436944406034963644516840\right) a{\left(n + 66 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(7530680029266203447155552922865969540781073185381205131 n^{6} + 2691096865663349126710307557852497992749779397540416526693 n^{5} + 397864312815411129602342748180471278165363937574302866808075 n^{4} + 31108052079057842412201980420888206523112248737591872246780395 n^{3} + 1354224077668965929029729005304345037727793863651002103074915474 n^{2} + 31046377545298372063800908772184602581597366916669859978828065912 n + 291838896276618622101479778461358471302332623455451110719754799600\right) a{\left(n + 64 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(9498779800845338052246133647946157174943462527199160363 n^{6} + 2443133846734083697755707402154830236750590658437047730534 n^{5} + 261562323422321654173647780139111449336464444290892350509205 n^{4} + 14919577353355579363788165839386842711262909144684131514274610 n^{3} + 478199188633147608296665607513406455511615666070453431708189472 n^{2} + 8165840107174628099922397220500163634063023371823716470516852336 n + 58038195823457695335809064015211656344411284112381332167342290280\right) a{\left(n + 43 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(11222614735116255372254350191557326833613487828108856757 n^{6} + 4767139073589742780045099366607816500585008675712700308371 n^{5} + 843665482965974402127039310707720282440631983890198233495685 n^{4} + 79623843073592448245991682098873747187272434367126363942165525 n^{3} + 4226704309368993537133411781026363707542096749518258619912687318 n^{2} + 119653198336511438118319925357409691005537204884551688268522904584 n + 1411243935780777521217073145315976121585287467313786808950763918560\right) a{\left(n + 70 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(12324294913149681662095129234353106969349174783596507265 n^{6} + 5124033428445684848344850446452155467282909821673445569719 n^{5} + 887529037428946076946508342916643852421789583880675224296925 n^{4} + 81975956593943314027633275653018571213710251180122268240822185 n^{3} + 4258435739700650093038606982853321137719544662941350316707767730 n^{2} + 117964723114058701920689168536287675365794578805753953086733044016 n + 1361398427424395794253346840983252842264839989632648376456772085440\right) a{\left(n + 69 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(19205297205290337858557786127218092700059099236647510714 n^{6} + 4985199991253936511987545087201476760562511621106660080467 n^{5} + 539292541087235661154286706713750650399125300539775674111630 n^{4} + 31121856150075174168979782815229395439921216069559673263958205 n^{3} + 1010505773649349927528359756278315844674371067889149768939963456 n^{2} + 17503700476111031763976080767116376174187011034207942682590551928 n + 126368315557992584143263619787187479358593175314790071875550912760\right) a{\left(n + 44 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{5 \left(19726925900264695137257274348472544208084839255741665703 n^{6} + 6770740459886194829453422133047817116803487115591745208127 n^{5} + 968248250286197710847478182420473776418001889328131750128953 n^{4} + 73844976347142422451172015757110295329832673122715179631586325 n^{3} + 3167835268032688406154140767696921206313522133370677312114112048 n^{2} + 72474921477846123388164872894486435445794972287284246218760955340 n + 690854226015734931751564746896854635263251532418430362980913833136\right) a{\left(n + 57 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(21220963399266451072520709789788458638197498131314180169 n^{6} + 5477206391472985185735078823423719800978246287958430292617 n^{5} + 568381504670338592898743101938272067066353465882943537305500 n^{4} + 29789142009511466234005615240921666459617450023620606134984225 n^{3} + 799685203577193893615724996549707500009748211295519148510955931 n^{2} + 9367313980040729586227903576303133178552273739591610483742578558 n + 20460482414966524144859823515408396904143782250842271776289095320\right) a{\left(n + 51 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(26663640870164197359543619952898141233198661218052554923 n^{6} + 10237710750801859444226694639860595447980292114399926301331 n^{5} + 1637669881490324289854224119717623039019000762883352603729815 n^{4} + 139701457242006485770131559898204398293229188707249870273493365 n^{3} + 6702724150406634554484814791535664855613925289136531647064282622 n^{2} + 171496293369601806325967724766308081379083136023421942572718723944 n + 1828108891071329464082991428251561738000167694586603815872804354000\right) a{\left(n + 63 \right)}}{538405119279360683016192 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(28431439269076266648717955602053881257680375390757220687 n^{6} + 7092914744322520119770049530360063485406741190404377652679 n^{5} + 737075489215423940393572704001542224011152989062524981042205 n^{4} + 40838297696109527783573170967822781641172784294117611398299725 n^{3} + 1272367238551146402152677616607417566854166615728281579502007308 n^{2} + 21135838704342483545105276104103343420050984364632516747015215476 n + 146243058748559569871199752333169789684796035666520619038969371360\right) a{\left(n + 42 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(31637207568146091902244179033776636655228541088627847969 n^{6} + 9911793024135664407551692580224259154366562769859274348413 n^{5} + 1290628280662388182930369959636995888098729813869539742812285 n^{4} + 89381417905175242365377321693944850463967656149622818108207475 n^{3} + 3471275481365421736917581590223666052184163378546166040994757506 n^{2} + 71656626318905642883321181986220011179507924731979628241632910632 n + 613996494484541788550821502266705330330543084224100699718071681440\right) a{\left(n + 55 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(35539517671787121309570812003527793935257233739224584037 n^{6} + 11540533826591878011531173336810063325279877604492662571192 n^{5} + 1560593227185507006465171504564100372240240017295804648416025 n^{4} + 112492709628556377140901422676500061898436079947069270730113660 n^{3} + 4558945720779273871548409392564362340271252401573875123229873438 n^{2} + 98490916444176815100031899221901231178377773061249558907140317168 n + 886174494437604815610922479832893610447809843739113437191912722960\right) a{\left(n + 53 \right)}}{269202559639680341508096 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(51359504836233975567849479029457231949919976324898437147 n^{6} + 14210133787575180685660031587855096255437613161266998451271 n^{5} + 1636811074759704543654613492288188986753261145304117834159355 n^{4} + 100470036866201297390942060155659515893992612006751845438298545 n^{3} + 3466092505393887325127901984131909838283540694501591280428544218 n^{2} + 63721984830194584645351065266492562352872198614982308731880723064 n + 487727749130888328169848851747982879047099787728325970798076891760\right) a{\left(n + 46 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(53852849796679607577232228225490733984993075159331051555 n^{6} + 20672324754212077045386649926975945993151496034774492963993 n^{5} + 3304326290232526461975873173546925564523077816641592126546085 n^{4} + 281505112382889581567283654882809249328944824433247473125314195 n^{3} + 13480592528531009387472719697367022165660584496553643416638823760 n^{2} + 344042314743011532995862757322408937527547129738267887970082861932 n + 3655681449450171633503433222439393704653696629970459185526037995760\right) a{\left(n + 65 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(72698829547961012510925759069641476798295033107590635995 n^{6} + 19835864002762743911842733897415902821000305750058090002837 n^{5} + 2253925403770689118698147823118678642385855379902734421696955 n^{4} + 136520843632611273612869605092938892881775437107186587864757155 n^{3} + 4648890420523570349136780766097763089598462090273974149055465530 n^{2} + 84384492627305408403051632837489089590290812670157123287399501688 n + 637858825154072898421702488702234745655786426314595684341857861840\right) a{\left(n + 47 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(78674661868721859255616696795328754898460299339882984661 n^{6} + 27403956661595323946826141734726077991546631883697430656793 n^{5} + 3979982373788766944497279888806767399579124720269420423911655 n^{4} + 308496547613701863946078211766585275521991888798015396008494315 n^{3} + 13460019788473881958465891636273729438344299798698760701347024164 n^{2} + 313432471079044124208048032626923338563268578057637348560073077692 n + 3043231450196718487375586914944113346298949347539215925263860966320\right) a{\left(n + 58 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(89666036023118595323205667783259466966124316973376488029 n^{6} + 32842704153042946800224251192882464364665593650269003431079 n^{5} + 5008557126161692366067613770944425463447833715324553853232805 n^{4} + 407059448187078587691425851927581741541959534758839229019818985 n^{3} + 18595008385627022776353488743174545020736060777093057512386000166 n^{2} + 452690938108241905491422528769287917293823562924273297867263426296 n + 4588394720341477095052903339194724703921339924259462993141902786160\right) a{\left(n + 61 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(91146571270821085464590290052705742837913920635622295727 n^{6} + 24340634711830706763320804521821905844231875211464060674749 n^{5} + 2707811074661073127462035101432351305471613885913923383801685 n^{4} + 160623627707645306282530777398274714271815753902202552449070455 n^{3} + 5358320916035750632303577728126313764116091179464559544255963148 n^{2} + 95313040638166416338133103701652259887041892389133786986303413916 n + 706269180065949000818022002621035684680745101132187482916440076080\right) a{\left(n + 45 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(92006528725450167368456173745795511510844944837647330449 n^{6} + 27058226346665197062076582414102624156123309111101390306045 n^{5} + 3313627107556355542444038289786455362963776384700824656069685 n^{4} + 216294592858869363174569856809306425571519505070058158660876155 n^{3} + 7936942781466231311723149823099437565067547996368335141410674586 n^{2} + 155241057545032249382993886697084545321221167507014928154279650920 n + 1264444330545607100267126070232019735592854035444324631904649262160\right) a{\left(n + 49 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(95700247069057611535057356354714183452816964245112958775 n^{6} + 29229912275158821393107978368299764668333684830846409388007 n^{5} + 3716239648522196590292674260099679086527513245424613549666125 n^{4} + 251729443659172020899381359335916455985301566181963255162066205 n^{3} + 9581271412820118042848245106484708677185437370890709832499195740 n^{2} + 194279328337215126481182797388708504385280331173862005778659164428 n + 1639501786654313740494926412962821962366042280503073971571948765680\right) a{\left(n + 52 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(105482628368260665775862595063805178618289254176744151327 n^{6} + 35228212010638689120249644471305790229170748305282305648107 n^{5} + 4897633957729479666875123850970112659552527127911321659915015 n^{4} + 362827320659103896819136085584483486327919845123485296564340325 n^{3} + 15106903048674873769542200548298406982348870621747738912881953738 n^{2} + 335202565339353045081780921807231599449923874823265018705980524848 n + 3096725047667603999675704043511695953874039737073591838657242190360\right) a{\left(n + 54 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(147799661542169816665546768474575738616072576863231421111 n^{6} + 41679285803794546375180118942671305165301599105175760731347 n^{5} + 4894744937526538398821218065453844116075256314977215656822595 n^{4} + 306412038262972557276970332078426081386843470236274027870872045 n^{3} + 10783605115995184700146595008436032539249252414603263369130568294 n^{2} + 202289314418350321440391340487341092670819177642447336581302858528 n + 1580208973666623091202614416487221326977086667515840792463675717200\right) a{\left(n + 48 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} - \frac{\left(171619176029576526297473579315012723504326404149351865775 n^{6} + 61859591501348999267286333147986448674044562412065309351151 n^{5} + 9295149611269692258761675352730185871175088299579107481374645 n^{4} + 745286881593816462464838720235398455126851874729453484671240925 n^{3} + 33630353622574572676229520730345014818799064518504121033191751060 n^{2} + 809758276576433932409506507692267397464285161401367460830943931644 n + 8128005091241634511969021442802584829021331904219226843793878176640\right) a{\left(n + 60 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(173587478078209782420166858073273886266425186115600388509 n^{6} + 64759131761490239934754419524500591821810285764281499647119 n^{5} + 10064567013848482068058737324956861424397315035450099677065385 n^{4} + 834086039801242170708143136028951426683212333744718898900478865 n^{3} + 38875171211580975675401620305897133573212645512844626691815885666 n^{2} + 966175205474102224153309771564083427072105340648108891718788991096 n + 10003495533073963284687718868781018882234470413705182002075778888000\right) a{\left(n + 62 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(180732268081730976442967839333825638439951059734162881795 n^{6} + 60803885249242832964399102280064799485725559116946074815249 n^{5} + 8524020644044302479866066241382851483776659822278697455215780 n^{4} + 637361627394582646114627275666478047427690053377008092941671065 n^{3} + 26808972443792502706403353658145523066437946246318774662972492325 n^{2} + 601456548957463756962271788989166438990944591642382707892258175026 n + 5622753331129659616341133095293895977607135942194852001964958144640\right) a{\left(n + 56 \right)}}{807607678919041024524288 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)} + \frac{\left(309497507109320036028262679702974152788997475671334757183 n^{6} + 109748878695409501653852683229827946140498551849211256950481 n^{5} + 16219928226483339790022340206547437969331691897570036551339995 n^{4} + 1278832443661222157801720181469284878207733546628077857762352855 n^{3} + 56730673444622884789936418198506911178619777768207111407066763582 n^{2} + 1342572631720711733133354874679135665285680281042723598171200044704 n + 13242283900598662999050240939381812103055993653024496411051908491280\right) a{\left(n + 59 \right)}}{1615215357838082049048576 \left(n + 109\right) \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(2 n + 221\right) \left(2 n + 223\right)}, \quad n \geq 111\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 356 rules.

Finding the specification took 24145 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 356 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{41}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{351}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{310}\! \left(x \right)\\ F_{26}\! \left(x \right) &= -F_{350}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2} \left(x \right)^{2}\\ F_{29}\! \left(x \right) &= -F_{349}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{319}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{138}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= \frac{F_{35}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= -F_{43}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{41}\! \left(x \right) &= x\\ F_{42}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{0}\! \left(x \right) F_{41}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{41}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{41}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{41}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{61}\! \left(x \right) &= 0\\ F_{62}\! \left(x \right) &= F_{41}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{41}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{41}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{41}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{41}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{41}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{78}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{85}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= \frac{F_{87}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{87}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{91}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{41}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{95}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{41}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{61}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{110}\! \left(x \right)+F_{118}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)+F_{118}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{41}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{116}\! \left(x \right)+F_{118}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{41}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{118}\! \left(x \right) &= 0\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)+F_{124}\! \left(x \right)+F_{125}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{108}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{124}\! \left(x \right) &= 0\\ F_{125}\! \left(x \right) &= 0\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{41}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{132}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{41}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{0}\! \left(x \right) F_{136}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{138}\! \left(x \right) &= -F_{143}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= \frac{F_{140}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{143}\! \left(x \right) &= -F_{147}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= \frac{F_{145}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{139}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{315}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{150}\! \left(x \right) &= \frac{F_{151}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= -F_{167}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= \frac{F_{154}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= -F_{158}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= \frac{F_{157}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{157}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{158}\! \left(x \right) &= -F_{161}\! \left(x \right)+F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= \frac{F_{160}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{160}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{162}\! \left(x \right) &= -F_{165}\! \left(x \right)+F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= \frac{F_{164}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{164}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{0}\! \left(x \right) F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{170}\! \left(x \right) &= -F_{173}\! \left(x \right)+F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{172}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{2}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{233}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{181}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{136}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{0}\! \left(x \right) F_{47}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= -F_{189}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= \frac{F_{188}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{188}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{222}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{0}\! \left(x \right) F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{221}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{198}\! \left(x \right)+F_{206}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= x^{2}\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{197}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{206}\! \left(x \right) &= x^{2}\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{216}\! \left(x \right)+F_{220}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{211}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{207}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{193}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{207}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{41}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{41}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{0}\! \left(x \right) F_{41}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{0}\! \left(x \right) F_{226}\! \left(x \right) F_{231}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{0}\! \left(x \right) F_{228}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{0}\! \left(x \right) F_{41}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{235}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{190}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{236}\! \left(x \right) &= \frac{F_{237}\! \left(x \right)}{F_{310}\! \left(x \right)}\\ F_{237}\! \left(x \right) &= -F_{309}\! \left(x \right)+F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= \frac{F_{239}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{239}\! \left(x \right) &= F_{240}\! \left(x \right)\\ F_{240}\! \left(x \right) &= -F_{243}\! \left(x \right)+F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= -F_{255}\! \left(x \right)+F_{242}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)+F_{253}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)\\ F_{245}\! \left(x \right) &= F_{246}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{249}\! \left(x \right) &= -F_{229}\! \left(x \right)+F_{185}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{192}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{153}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{2}\! \left(x \right) F_{256}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)\\ F_{259}\! \left(x \right) &= F_{260}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{261}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{305}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{267}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{263}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{277}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{268}\! \left(x \right)\\ F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{275}\! \left(x \right)\\ F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\ F_{274}\! \left(x \right) &= F_{258}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{268}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{278}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)+F_{280}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{290}\! \left(x \right)+F_{294}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{285}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{281}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{263}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{281}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{290}\! \left(x \right) &= F_{291}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{293}\! \left(x \right)\\ F_{292}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{288}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{295}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{304}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{299}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{301}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{303}\! \left(x \right)\\ F_{302}\! \left(x \right) &= F_{299}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{303}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{297}\! \left(x \right)\\ F_{304}\! \left(x \right) &= F_{297}\! \left(x \right)\\ F_{305}\! \left(x \right) &= F_{306}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{308}\! \left(x \right)\\ F_{307}\! \left(x \right) &= F_{299}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{308}\! \left(x \right) &= F_{299}\! \left(x \right)\\ F_{309}\! \left(x \right) &= F_{24}\! \left(x \right) F_{243}\! \left(x \right)\\ F_{310}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{311}\! \left(x \right)\\ F_{311}\! \left(x \right) &= F_{312}\! \left(x \right)\\ F_{312}\! \left(x \right) &= F_{0}\! \left(x \right) F_{313}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{313}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{314}\! \left(x \right)\\ F_{314}\! \left(x \right) &= F_{2}\! \left(x \right) F_{310}\! \left(x \right)\\ F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)\\ F_{316}\! \left(x \right) &= F_{0}\! \left(x \right) F_{317}\! \left(x \right)\\ F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\ F_{318}\! \left(x \right) &= F_{0}\! \left(x \right) F_{134}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)\\ F_{320}\! \left(x \right) &= F_{321}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{321}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{322}\! \left(x \right)\\ F_{322}\! \left(x \right) &= \frac{F_{323}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{323}\! \left(x \right) &= F_{324}\! \left(x \right)\\ F_{324}\! \left(x \right) &= -F_{340}\! \left(x \right)+F_{325}\! \left(x \right)\\ F_{325}\! \left(x \right) &= F_{326}\! \left(x \right)+F_{327}\! \left(x \right)\\ F_{326}\! \left(x \right) &= F_{2}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{327}\! \left(x \right) &= -F_{339}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{328}\! \left(x \right) &= \frac{F_{329}\! \left(x \right)}{F_{0}\! \left(x \right) F_{41}\! \left(x \right)}\\ F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\ F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)+F_{332}\! \left(x \right)\\ F_{331}\! \left(x \right) &= F_{0}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)\\ F_{333}\! \left(x \right) &= F_{334}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)+F_{338}\! \left(x \right)\\ F_{335}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{336}\! \left(x \right)\\ F_{336}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{337}\! \left(x \right)\\ F_{337}\! \left(x \right) &= F_{0}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{338}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{339}\! \left(x \right) &= F_{0}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{340}\! \left(x \right) &= -F_{341}\! \left(x \right)+F_{328}\! \left(x \right)\\ F_{341}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{342}\! \left(x \right) &= -F_{345}\! \left(x \right)+F_{343}\! \left(x \right)\\ F_{343}\! \left(x \right) &= \frac{F_{344}\! \left(x \right)}{F_{41}\! \left(x \right)}\\ F_{344}\! \left(x \right) &= F_{324}\! \left(x \right)\\ F_{345}\! \left(x \right) &= F_{346}\! \left(x \right)\\ F_{346}\! \left(x \right) &= F_{0}\! \left(x \right) F_{347}\! \left(x \right)\\ F_{347}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{348}\! \left(x \right)\\ F_{348}\! \left(x \right) &= F_{0}\! \left(x \right) F_{229}\! \left(x \right)\\ F_{349}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{350}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)\\ F_{352}\! \left(x \right) &= F_{353}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{353}\! \left(x \right) &= F_{354}\! \left(x \right)+F_{355}\! \left(x \right)\\ F_{354}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{355}\! \left(x \right) &= F_{0}\! \left(x \right) F_{19}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 58 rules.

Finding the specification took 62526 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 58 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{12}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{0}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{15}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{30}\! \left(x \right) &= \frac{F_{31}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{31}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{15}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{0}\! \left(x \right) F_{30}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{0}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{0}\! \left(x \right) F_{32}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{52}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 301 rules.

Finding the specification took 69584 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 301 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{13}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{32}\! \left(x \right) &= 0\\ F_{33}\! \left(x \right) &= F_{13}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{13}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{13}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{13}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{2}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{13}\! \left(x \right) F_{27}\! \left(x \right) F_{47}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{53}\! \left(x \right) &= -F_{60}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= \frac{F_{55}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= \frac{F_{59}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{59}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{13}\! \left(x \right) F_{27}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{17}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{65}\! \left(x \right) &= -F_{300}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= \frac{F_{67}\! \left(x \right)}{F_{0}\! \left(x \right) F_{13}\! \left(x \right)}\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{13}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{13}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{299}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{0}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{13}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{58}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{249}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= -F_{298}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{2} \left(x \right)^{2}\\ F_{90}\! \left(x \right) &= -F_{297}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= -F_{256}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= -F_{254}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= \frac{F_{94}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= -F_{158}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= \frac{F_{97}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{0}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{15}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{0}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{0}\! \left(x \right) F_{112}\! \left(x \right) F_{117}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{0}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{154}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{0}\! \left(x \right) F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{153}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{138}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{13}\! \left(x \right) F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= x^{2}\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{129}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{138}\! \left(x \right) &= x^{2}\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{148}\! \left(x \right)+F_{152}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{13}\! \left(x \right) F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{125}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{13}\! \left(x \right) F_{139}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{13}\! \left(x \right) F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{13}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{0}\! \left(x \right) F_{113}\! \left(x \right) F_{117}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{162}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{13}\! \left(x \right) F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= \frac{F_{165}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= \frac{F_{168}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{13}\! \left(x \right) F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{220}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{13}\! \left(x \right) F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{178}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{192}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{13}\! \left(x \right) F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{183}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{13}\! \left(x \right) F_{173}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{13}\! \left(x \right) F_{183}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{13}\! \left(x \right) F_{193}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{205}\! \left(x \right)+F_{209}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{13}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{13}\! \left(x \right) F_{178}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{13}\! \left(x \right) F_{196}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{13}\! \left(x \right) F_{206}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{208}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{13}\! \left(x \right) F_{210}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\ F_{213}\! \left(x \right) &= F_{13}\! \left(x \right) F_{214}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{13}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{218}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{212}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{212}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{13}\! \left(x \right) F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{214}\! \left(x \right)\\ F_{224}\! \left(x \right) &= -F_{228}\! \left(x \right)+F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= -F_{170}\! \left(x \right)+F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= \frac{F_{227}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{227}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{229}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)\\ F_{231}\! \left(x \right) &= F_{13}\! \left(x \right) F_{232}\! \left(x \right)\\ F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{237}\! \left(x \right)\\ F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{236}\! \left(x \right)\\ F_{235}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{236}\! \left(x \right) &= -F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)\\ F_{238}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{239}\! \left(x \right)\\ F_{239}\! \left(x \right) &= F_{124}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{240}\! \left(x \right) &= F_{0}\! \left(x \right) F_{241}\! \left(x \right)\\ F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{244}\! \left(x \right)\\ F_{242}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{243}\! \left(x \right)\\ F_{243}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{230}\! \left(x \right)\\ F_{244}\! \left(x \right) &= \frac{F_{245}\! \left(x \right)}{F_{249}\! \left(x \right)}\\ F_{245}\! \left(x \right) &= -F_{248}\! \left(x \right)+F_{246}\! \left(x \right)\\ F_{246}\! \left(x \right) &= \frac{F_{247}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{247}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{248}\! \left(x \right) &= F_{228}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{249}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{250}\! \left(x \right)\\ F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)\\ F_{251}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{252}\! \left(x \right)\\ F_{252}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{253}\! \left(x \right) &= F_{2}\! \left(x \right) F_{249}\! \left(x \right)\\ F_{254}\! \left(x \right) &= F_{255}\! \left(x \right)\\ F_{255}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\ F_{257}\! \left(x \right) &= F_{13}\! \left(x \right) F_{258}\! \left(x \right)\\ F_{258}\! \left(x \right) &= -F_{290}\! \left(x \right)+F_{259}\! \left(x \right)\\ F_{259}\! \left(x \right) &= \frac{F_{260}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)\\ F_{261}\! \left(x \right) &= -F_{288}\! \left(x \right)+F_{262}\! \left(x \right)\\ F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{272}\! \left(x \right)\\ F_{263}\! \left(x \right) &= F_{2}\! \left(x \right) F_{264}\! \left(x \right)\\ F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{265}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{266}\! \left(x \right)\\ F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)\\ F_{267}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right) F_{268}\! \left(x \right)\\ F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)\\ F_{271}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{13}\! \left(x \right)\\ F_{272}\! \left(x \right) &= -F_{287}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{273}\! \left(x \right) &= \frac{F_{274}\! \left(x \right)}{F_{0}\! \left(x \right) F_{13}\! \left(x \right)}\\ F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\ F_{275}\! \left(x \right) &= F_{276}\! \left(x \right)+F_{278}\! \left(x \right)\\ F_{276}\! \left(x \right) &= F_{0}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{277}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{278}\! \left(x \right) &= F_{279}\! \left(x \right)\\ F_{279}\! \left(x \right) &= F_{13}\! \left(x \right) F_{280}\! \left(x \right)\\ F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)+F_{286}\! \left(x \right)\\ F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{284}\! \left(x \right)\\ F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)\\ F_{283}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{277}\! \left(x \right)\\ F_{284}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{285}\! \left(x \right)\\ F_{285}\! \left(x \right) &= F_{0}\! \left(x \right) F_{122}\! \left(x \right)\\ F_{286}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{287}\! \left(x \right) &= F_{0}\! \left(x \right) F_{264}\! \left(x \right)\\ F_{288}\! \left(x \right) &= -F_{289}\! \left(x \right)+F_{273}\! \left(x \right)\\ F_{289}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{290}\! \left(x \right) &= -F_{293}\! \left(x \right)+F_{291}\! \left(x \right)\\ F_{291}\! \left(x \right) &= \frac{F_{292}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{292}\! \left(x \right) &= F_{261}\! \left(x \right)\\ F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)\\ F_{294}\! \left(x \right) &= F_{0}\! \left(x \right) F_{295}\! \left(x \right)\\ F_{295}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{296}\! \left(x \right)\\ F_{296}\! \left(x \right) &= F_{0}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{297}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{298}\! \left(x \right) &= F_{2} \left(x \right)^{2} F_{0}\! \left(x \right)\\ F_{299}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{300}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{73}\! \left(x \right)\\ \end{align*}\)