Av(13452, 13542, 14253, 14352, 23451, 23541, 24153, 24351, 32451, 32541, 34152, 34251, 42351, 43152, 43251)
Counting Sequence
1, 1, 2, 6, 24, 105, 479, 2243, 10681, 51439, 249696, 1219062, 5977226, 29402945, 145004863, ...
This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 43 rules.
Found on January 22, 2022.Finding the specification took 24 seconds.
Copy 43 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
F_{5}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{7}\! \left(x , y\right)\\
F_{6}\! \left(x \right) &= x\\
F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x , y\right)+F_{40}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{6}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= \frac{y F_{10}\! \left(x , y\right)-F_{10}\! \left(x , 1\right)}{-1+y}\\
F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{33}\! \left(x , y\right)+F_{36}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , 1, y\right)\\
F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right) F_{6}\! \left(x \right)\\
F_{13}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y , z\right)+F_{18}\! \left(x , y , z\right)+F_{20}\! \left(x , y , z\right)+F_{22}\! \left(x , y , z\right)\\
F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , z , y\right)\\
F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , y\right) F_{6}\! \left(x \right) F_{9}\! \left(x , z\right)\\
F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= y x\\
F_{18}\! \left(x , y , z\right) &= F_{19}\! \left(x , y , z\right) F_{6}\! \left(x \right)\\
F_{19}\! \left(x , y , z\right) &= \frac{y F_{13}\! \left(x , y , z\right)-F_{13}\! \left(x , 1, z\right)}{-1+y}\\
F_{20}\! \left(x , y , z\right) &= F_{21}\! \left(x , y , z\right)\\
F_{21}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right) F_{16}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\
F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x , z , y\right)\\
F_{23}\! \left(x , y , z\right) &= F_{17}\! \left(x , y\right) F_{24}\! \left(x , y\right) F_{32}\! \left(x , y , z\right)\\
F_{25}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y\right)+F_{30}\! \left(x , y\right)\\
F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y\right)+F_{28}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{26}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{31}\! \left(x , y\right)\\
F_{31}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{26}\! \left(x , y\right)\\
F_{32}\! \left(x , y , z\right) &= F_{16}\! \left(x , z\right)+F_{17}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{35}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x , 1\right)\\
F_{36}\! \left(x , y\right) &= F_{37}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{16}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\
F_{38}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{6}\! \left(x \right)\\
F_{39}\! \left(x , y\right) &= \frac{y F_{7}\! \left(x , y\right)-F_{7}\! \left(x , 1\right)}{-1+y}\\
F_{40}\! \left(x , y\right) &= F_{41}\! \left(x , y\right)\\
F_{41}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\
F_{42}\! \left(x \right) &= F_{35}\! \left(x \right) F_{6}\! \left(x \right)\\
\end{align*}\)