Av(13452, 13524, 13542, 31452, 31524, 31542, 34152, 34512, 35124, 35142, 35412)
Counting Sequence
1, 1, 2, 6, 24, 109, 522, 2574, 12964, 66426, 345300, 1816976, 9660732, 51825093, 280168474, ...
This specification was found using the strategy pack "Row And Col Placements Tracked Fusion" and has 29 rules.
Found on January 23, 2022.Finding the specification took 58 seconds.
Copy 29 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\
F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\
F_{6}\! \left(x , y\right) &= -\frac{-y F_{4}\! \left(x , y\right)+F_{4}\! \left(x , 1\right)}{-1+y}\\
F_{7}\! \left(x \right) &= x\\
F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= -\frac{-y F_{10}\! \left(x , y\right)+F_{10}\! \left(x , 1\right)}{-1+y}\\
F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= y x\\
F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{7}\! \left(x \right)\\
F_{20}\! \left(x , y\right) &= -\frac{-y F_{21}\! \left(x , y\right)+F_{21}\! \left(x , 1\right)}{-1+y}\\
F_{21}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right) F_{7}\! \left(x \right)\\
F_{23}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{24}\! \left(x , y\right)\\
F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{21}\! \left(x , y\right) F_{26}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right) F_{7}\! \left(x \right)\\
\end{align*}\)