Av(13452, 13524, 13542, 15234, 15324, 15342, 31452, 31524, 31542, 34152)
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2607, 12997, 65567, 334424, 1722836, 8954716, 46910874, 247465716, ...
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 189 rules.
Found on January 25, 2022.Finding the specification took 6863 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 189 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13} \left(x \right)^{2} F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{25}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= -F_{32}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= \frac{F_{31}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{31}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= \frac{F_{38}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= -F_{43}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= \frac{F_{42}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{42}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{20}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{58}\! \left(x \right) &= 0\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{64}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{70}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{75}\! \left(x \right)+F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{80}\! \left(x \right) &= \frac{F_{81}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{84}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{0}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= \frac{F_{96}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{13}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= -F_{13}\! \left(x \right)+F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= \frac{F_{101}\! \left(x \right)}{F_{34} \left(x \right)^{2} F_{4}\! \left(x \right)}\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= -F_{170}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x , 1\right)\\
F_{104}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{111}\! \left(x , y\right)\\
F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right) F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{107}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{108}\! \left(x , y\right)\\
F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)\\
F_{109}\! \left(x , y\right) &= F_{107}\! \left(x , y\right) F_{110}\! \left(x , y\right)\\
F_{110}\! \left(x , y\right) &= y x\\
F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)\\
F_{112}\! \left(x , y\right) &= F_{113}\! \left(x , y\right) F_{4}\! \left(x \right)\\
F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)+F_{115}\! \left(x , y\right)\\
F_{114}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)\\
F_{115}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)\\
F_{116}\! \left(x , y\right) &= F_{117}\! \left(x , y\right) F_{34}\! \left(x \right)\\
F_{117}\! \left(x , y\right) &= F_{118}\! \left(x \right)+F_{168}\! \left(x , y\right)\\
F_{118}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{125}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= -F_{163}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{13}\! \left(x \right) F_{134}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{134}\! \left(x \right) &= \frac{F_{135}\! \left(x \right)}{F_{34}\! \left(x \right) F_{35}\! \left(x \right)}\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\
F_{136}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{137}\! \left(x \right) &= \frac{F_{138}\! \left(x \right)}{F_{34}\! \left(x \right) F_{4}\! \left(x \right)}\\
F_{138}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{139}\! \left(x \right) &= \frac{F_{140}\! \left(x \right)}{F_{34}\! \left(x \right) F_{4}\! \left(x \right)}\\
F_{140}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{127}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{143}\! \left(x \right) &= \frac{F_{144}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= -F_{151}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{100}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{13}\! \left(x \right) F_{154}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= \frac{F_{156}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{154}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{13} \left(x \right)^{2} F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= -F_{165}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{134}\! \left(x \right) F_{2}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{168}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)\\
F_{169}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{13}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= -F_{34}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{35} \left(x \right)^{2} F_{134}\! \left(x \right) F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{178}\! \left(x \right) F_{183}\! \left(x \right)\\
F_{178}\! \left(x \right) &= -F_{13}\! \left(x \right)+F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= \frac{F_{180}\! \left(x \right)}{F_{35}\! \left(x \right)}\\
F_{180}\! \left(x \right) &= -F_{100}\! \left(x \right)+F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= \frac{F_{182}\! \left(x \right)}{F_{34} \left(x \right)^{2} F_{4}\! \left(x \right)}\\
F_{182}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{183}\! \left(x \right) &= -F_{13}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{184}\! \left(x \right) &= \frac{F_{185}\! \left(x \right)}{F_{0}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)}\\
F_{185}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{13}\! \left(x \right) F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{9}\! \left(x \right)\\
\end{align*}\)