###### Av(1342, 3214)
Generating Function
$$\displaystyle -\frac{\left(x -1\right) \left(3 x -1\right) \left(x^{2}-3 x +1\right)}{2 x^{5}-10 x^{4}+25 x^{3}-22 x^{2}+8 x -1}$$
Counting Sequence
1, 1, 2, 6, 22, 86, 336, 1290, 4870, 18164, 67234, 247786, 911120, 3346618, 12286942, ...
Implicit Equation for the Generating Function
$$\displaystyle \left(2 x^{5}-10 x^{4}+25 x^{3}-22 x^{2}+8 x -1\right) F \! \left(x \right)+\left(x -1\right) \left(3 x -1\right) \left(x^{2}-3 x +1\right) = 0$$
Recurrence
$$\displaystyle a \! \left(0\right) = 1$$
$$\displaystyle a \! \left(1\right) = 1$$
$$\displaystyle a \! \left(2\right) = 2$$
$$\displaystyle a \! \left(3\right) = 6$$
$$\displaystyle a \! \left(4\right) = 22$$
$$\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-10 a \! \left(n +1\right)+25 a \! \left(n +2\right)-22 a \! \left(n +3\right)+8 a \! \left(n +4\right), \quad n \geq 5$$
Explicit Closed Form
$$\displaystyle -\frac{9310 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +3}}{17539}-\frac{9310 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +3}}{17539}-\frac{9310 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +3}}{17539}-\frac{9310 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +3}}{17539}-\frac{9310 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +3}}{17539}+\frac{41357 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +2}}{17539}+\frac{41357 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +2}}{17539}+\frac{41357 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +2}}{17539}+\frac{41357 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +2}}{17539}+\frac{41357 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +2}}{17539}-\frac{93738 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +1}}{17539}-\frac{93738 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +1}}{17539}-\frac{93738 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +1}}{17539}-\frac{93738 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +1}}{17539}-\frac{93738 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +1}}{17539}-\frac{8207 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n -1}}{17539}-\frac{8207 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n -1}}{17539}-\frac{8207 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n -1}}{17539}-\frac{8207 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n -1}}{17539}-\frac{8207 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n -1}}{17539}+\frac{55448 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n}}{17539}+\frac{55448 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n}}{17539}+\frac{55448 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n}}{17539}+\frac{55448 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n}}{17539}+\frac{55448 \mathit{RootOf} \left(2 Z^{5}-10 Z^{4}+25 Z^{3}-22 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n}}{17539}$$
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point $$(i, j)$$ represents how many permutations have value $$j$$ at index $$i$$ (darker = more).

### This specification was found using the strategy pack "Regular Insertion Encoding Right" and has 70 rules.

Found on April 28, 2021.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 70 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{17}\! \left(x \right) &= 0\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{41}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= 2 F_{17}\! \left(x \right)+F_{48}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{66}\! \left(x \right)\\ \end{align*}