Av(1342, 3214)
View Raw Data
Generating Function
(x1)(3x1)(x23x+1)2x510x4+25x322x2+8x1
Counting Sequence
1, 1, 2, 6, 22, 86, 336, 1290, 4870, 18164, 67234, 247786, 911120, 3346618, 12286942, ...
Implicit Equation for the Generating Function
(2x510x4+25x322x2+8x1)F(x)+(x1)(3x1)(x23x+1)=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=22
a(n+5)=2a(n)10a(n+1)+25a(n+2)22a(n+3)+8a(n+4),n5
Explicit Closed Form
9310RootOf(2Z510Z4+25Z322Z2+8Z1,index=1)n+3175399310RootOf(2Z510Z4+25Z322Z2+8Z1,index=2)n+3175399310RootOf(2Z510Z4+25Z322Z2+8Z1,index=3)n+3175399310RootOf(2Z510Z4+25Z322Z2+8Z1,index=4)n+3175399310RootOf(2Z510Z4+25Z322Z2+8Z1,index=5)n+317539+41357RootOf(2Z510Z4+25Z322Z2+8Z1,index=1)n+217539+41357RootOf(2Z510Z4+25Z322Z2+8Z1,index=2)n+217539+41357RootOf(2Z510Z4+25Z322Z2+8Z1,index=3)n+217539+41357RootOf(2Z510Z4+25Z322Z2+8Z1,index=4)n+217539+41357RootOf(2Z510Z4+25Z322Z2+8Z1,index=5)n+21753993738RootOf(2Z510Z4+25Z322Z2+8Z1,index=1)n+11753993738RootOf(2Z510Z4+25Z322Z2+8Z1,index=2)n+11753993738RootOf(2Z510Z4+25Z322Z2+8Z1,index=3)n+11753993738RootOf(2Z510Z4+25Z322Z2+8Z1,index=4)n+11753993738RootOf(2Z510Z4+25Z322Z2+8Z1,index=5)n+1175398207RootOf(2Z510Z4+25Z322Z2+8Z1,index=1)n1175398207RootOf(2Z510Z4+25Z322Z2+8Z1,index=2)n1175398207RootOf(2Z510Z4+25Z322Z2+8Z1,index=3)n1175398207RootOf(2Z510Z4+25Z322Z2+8Z1,index=4)n1175398207RootOf(2Z510Z4+25Z322Z2+8Z1,index=5)n117539+55448RootOf(2Z510Z4+25Z322Z2+8Z1,index=1)n17539+55448RootOf(2Z510Z4+25Z322Z2+8Z1,index=2)n17539+55448RootOf(2Z510Z4+25Z322Z2+8Z1,index=3)n17539+55448RootOf(2Z510Z4+25Z322Z2+8Z1,index=4)n17539+55448RootOf(2Z510Z4+25Z322Z2+8Z1,index=5)n17539
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point (i,j) represents how many permutations have value j at index i (darker = more).

This specification was found using the strategy pack "Regular Insertion Encoding Right" and has 70 rules.

Found on April 28, 2021.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Created with Raphaël 2.1.4
17
1
48
3
2
2
1
69, 66
3
3
2
2
1
3
3
2
1
4
x
67, 68
2
2
2
1
3
3
2
2
1
37, 38
2
2
1
3
2
2
1
+
66
3
3
2
1
65, 62
2
2
1
1
2
2
1
4
x
63, 64
1
1
1
2
2
1
1
11, 12
1
1
2
1
1
+
62
2
2
1
+
61
3
3
2
1
4
x
60
3
3
2
1
17
1
+
59
2
2
1
16
2
1
+
58
3
2
1
15
2
1
+
57
2
2
1
4
x
56
2
2
1
52, 53
2
2
2
1
3
3
2
2
1
37, 38
2
2
1
3
2
2
1
+
54, 55
3
3
2
2
1
3
3
2
1
4
x
52, 53
2
2
2
1
3
3
2
2
1
41
2
2
1
+
51
3
2
2
1
47, 48
2
2
1
3
2
2
1
32, 33
2
1
2
2
1
+
49, 50
3
2
2
1
3
2
1
4
x
47, 48
2
2
1
3
2
2
1
16
2
1
+
46
3
2
1
+
45
3
3
2
1
4
x
44
3
3
2
1
43, 31
3
2
2
1
3
2
1
4
x
42
3
2
2
1
17
1
17
1
+
41
2
2
1
37, 38
2
2
1
3
2
2
1
32, 33
2
1
2
2
1
+
39, 40
3
2
2
1
3
2
1
4
x
37, 38
2
2
1
3
2
2
1
32, 33
2
1
2
2
1
+
36
3
2
1
32, 33
2
1
2
2
1
2, 3
1
2
1
+
35
2
1
+
34
2
2
1
4
x
32, 33
2
1
2
2
1
+
31
3
2
1
27, 28
1
1
1
2
2
1
1
11, 12
1
1
2
1
1
+
29, 30
2
2
1
1
2
2
1
4
x
27, 28
1
1
1
2
2
1
1
21
1
1
+
26
2
1
1
10
2
1
+
25
2
2
1
4
x
24
2
2
1
23, 20
2
1
1
2
1
4
x
22
2
1
1
17
1
+
21
1
1
7, 8
1
1
1
+
20
2
1
+
19
3
2
1
4
x
18
3
2
1
17
1
+
16
2
1
2, 3
1
2
1
+
15
2
1
11, 12
1
1
2
1
1
7, 8
1
1
1
+
13, 14
2
1
1
2
1
4
x
11, 12
1
1
2
1
1
7, 8
1
1
1
+
10
2
1
6
1
+
9
1
1
4
x
7, 8
1
1
1
1
+
6
1
+
5
2
1
4
x
2, 3
1
2
1
1
+
0
1

Copy 70 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F15(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F6(x)F10(x)=F11(x)+F7(x)F11(x)=F12(x)F12(x)=F13(x)F4(x)F13(x)=F14(x)F14(x)=F11(x)+F7(x)F15(x)=F16(x)+F2(x)F16(x)=F17(x)+F18(x)+F56(x)F17(x)=0F18(x)=F19(x)F4(x)F19(x)=F20(x)+F31(x)F20(x)=F21(x)+F7(x)F21(x)=F17(x)+F22(x)+F24(x)F22(x)=F23(x)F4(x)F23(x)=F20(x)F24(x)=F25(x)F4(x)F25(x)=F10(x)+F26(x)F26(x)=F21(x)+F27(x)F27(x)=F28(x)F28(x)=F29(x)F4(x)F29(x)=F30(x)F30(x)=F11(x)+F27(x)F31(x)=F32(x)+F41(x)F32(x)=F33(x)F33(x)=F34(x)F4(x)F34(x)=F35(x)+F36(x)F35(x)=F2(x)+F32(x)F36(x)=F32(x)+F37(x)F37(x)=F38(x)F38(x)=F39(x)F4(x)F39(x)=F40(x)F40(x)=F32(x)+F37(x)F41(x)=2F17(x)+F42(x)+F44(x)F42(x)=F4(x)F43(x)F43(x)=F31(x)F44(x)=F4(x)F45(x)F45(x)=F46(x)+F51(x)F46(x)=F16(x)+F47(x)F47(x)=F48(x)F48(x)=F4(x)F49(x)F49(x)=F50(x)F50(x)=F32(x)+F47(x)F51(x)=F41(x)+F52(x)F52(x)=F53(x)F53(x)=F4(x)F54(x)F54(x)=F55(x)F55(x)=F37(x)+F52(x)F56(x)=F4(x)F57(x)F57(x)=F15(x)+F58(x)F58(x)=F16(x)+F59(x)F59(x)=2F17(x)+F48(x)+F60(x)F60(x)=F4(x)F61(x)F61(x)=F62(x)+F66(x)F62(x)=F11(x)+F63(x)F63(x)=F64(x)F64(x)=F4(x)F65(x)F65(x)=F62(x)F66(x)=F37(x)+F67(x)F67(x)=F68(x)F68(x)=F4(x)F69(x)F69(x)=F66(x)