Av(1342, 3142, 45132)
View Raw Data
Counting Sequence
1, 1, 2, 6, 22, 89, 380, 1678, 7584, 34875, 162560, 766124, 3644066, 17469863, 84324840, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x^{2}-2 x +2\right) F \left(x \right)^{4}+\left(2 x^{2}-4 x -1\right) F \left(x \right)^{3}+\left(2 x +3\right) F \left(x \right)^{2}-3 F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 22\)
\(\displaystyle a \! \left(5\right) = 89\)
\(\displaystyle a \! \left(6\right) = 380\)
\(\displaystyle a \! \left(7\right) = 1678\)
\(\displaystyle a \! \left(n +8\right) = -\frac{2 \left(4 n +5\right) \left(2 n +3\right) \left(4 n +3\right) a \! \left(n \right)}{9 \left(n +9\right) \left(n +7\right) \left(n +6\right)}+\frac{\left(14276 n^{3}+105300 n^{2}+252862 n +196515\right) a \! \left(n +1\right)}{27 \left(n +9\right) \left(n +7\right) \left(n +6\right)}-\frac{\left(88628 n^{3}+756114 n^{2}+2152783 n +2046777\right) a \! \left(n +2\right)}{54 \left(n +9\right) \left(n +7\right) \left(n +6\right)}+\frac{\left(271825 n^{3}+2607174 n^{2}+8461187 n +9320358\right) a \! \left(n +3\right)}{108 \left(n +9\right) \left(n +7\right) \left(n +6\right)}-\frac{\left(200183 n^{3}+2331978 n^{2}+9033313 n +11721078\right) a \! \left(n +4\right)}{108 \left(n +9\right) \left(n +7\right) \left(n +6\right)}+\frac{\left(20005 n^{3}+283212 n^{2}+1323137 n +2050536\right) a \! \left(n +5\right)}{27 \left(n +9\right) \left(n +7\right) \left(n +6\right)}-\frac{2 \left(2258 n^{3}+37968 n^{2}+210241 n +384615\right) a \! \left(n +6\right)}{27 \left(n +9\right) \left(n +7\right) \left(n +6\right)}+\frac{\left(181 n^{2}+2436 n +7931\right) a \! \left(n +7\right)}{9 \left(n +7\right) \left(n +9\right)}, \quad n \geq 8\)

This specification was found using the strategy pack "Row And Col Placements Expand Verified" and has 13 rules.

Found on January 22, 2022.

Finding the specification took 6 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 13 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{3}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{3}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "All The Strategies 1 Expand Verified" and has 14 rules.

Found on January 22, 2022.

Finding the specification took 24 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 14 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{4}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Req Corrob Expand Verified" and has 14 rules.

Found on January 22, 2022.

Finding the specification took 9 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 14 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{7}\! \left(x \right)\\ \end{align*}\)