###### Av(1342, 2431)
Generating Function
$$\displaystyle \frac{-3 x^{2}-x^{2} \sqrt{-4 x +1}+5 x -1}{4 x^{3}-8 x^{2}+6 x -1}$$
Counting Sequence
1, 1, 2, 6, 22, 88, 366, 1552, 6652, 28696, 124310, 540040, 2350820, 10248248, 44725516, ...
Implicit Equation for the Generating Function
$$\displaystyle \left(4 x^{3}-8 x^{2}+6 x -1\right) F \left(x \right)^{2}+\left(6 x^{2}-10 x +2\right) F \! \left(x \right)+x^{2}+4 x -1 = 0$$
Recurrence
$$\displaystyle a \! \left(0\right) = 1$$
$$\displaystyle a \! \left(1\right) = 1$$
$$\displaystyle a \! \left(2\right) = 2$$
$$\displaystyle a \! \left(3\right) = 6$$
$$\displaystyle a \! \left(n +4\right) = -\frac{8 \left(2 n +1\right) a \! \left(n \right)}{2+n}-\frac{4 \left(8 n +7\right) a \! \left(2+n \right)}{2+n}+\frac{12 \left(3 n +2\right) a \! \left(n +1\right)}{2+n}+\frac{2 \left(5 n +7\right) a \! \left(n +3\right)}{2+n}, \quad n \geq 4$$
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point $$(i, j)$$ represents how many permutations have value $$j$$ at index $$i$$ (darker = more).

### This specification was found using the strategy pack "Point And Row Placements" and has 19 rules.

Found on April 26, 2021.

Finding the specification took 5 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{3}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right) F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "All The Strategies 2" and has 23 rules.

Found on April 26, 2021.

Finding the specification took 91 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{16} \left(x \right)^{2} F_{12}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{3}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{3}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Point Placements" and has 20 rules.

Found on April 26, 2021.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 20 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{17} \left(x \right)^{2} F_{10}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17} \left(x \right)^{2} F_{10}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Insertion Point Placements Req Corrob" and has 24 rules.

Found on April 26, 2021.

Finding the specification took 52 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 24 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{15}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{15}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22} \left(x \right)^{2} F_{15}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Requirement Placements" and has 21 rules.

Found on April 26, 2021.

Finding the specification took 86 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 21 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16} \left(x \right)^{2} F_{2}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{16} \left(x \right)^{2} F_{10}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{16} \left(x \right)^{2} F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ \end{align*}