Av(1342, 2413, 4123)
Generating Function
\(\displaystyle -\frac{5 x^{4}-11 x^{3}+12 x^{2}-6 x +1}{2 x^{5}-12 x^{4}+20 x^{3}-17 x^{2}+7 x -1}\)
Counting Sequence
1, 1, 2, 6, 21, 75, 266, 939, 3311, 11676, 41183, 145273, 512466, 1807791, 6377231, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{5}-12 x^{4}+20 x^{3}-17 x^{2}+7 x -1\right) F \! \left(x \right)+5 x^{4}-11 x^{3}+12 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-12 a \! \left(n +1\right)+20 a \! \left(n +2\right)-17 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-12 a \! \left(n +1\right)+20 a \! \left(n +2\right)-17 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{1654 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +3}}{9383}+\frac{1654 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +3}}{9383}+\frac{1654 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +3}}{9383}+\frac{1654 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +3}}{9383}+\frac{1654 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +3}}{9383}-\frac{8995 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +2}}{9383}-\frac{8995 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +2}}{9383}-\frac{8995 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +2}}{9383}-\frac{8995 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +2}}{9383}-\frac{8995 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +2}}{9383}+\frac{12889 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +1}}{9383}+\frac{12889 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +1}}{9383}+\frac{12889 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +1}}{9383}+\frac{12889 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +1}}{9383}+\frac{12889 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +1}}{9383}+\frac{1634 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n -1}}{9383}+\frac{1634 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n -1}}{9383}+\frac{1634 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n -1}}{9383}+\frac{1634 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n -1}}{9383}+\frac{1634 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n -1}}{9383}-\frac{7438 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n}}{9383}-\frac{7438 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n}}{9383}-\frac{7438 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n}}{9383}-\frac{7438 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n}}{9383}-\frac{7438 \mathit{RootOf} \left(2 Z^{5}-12 Z^{4}+20 Z^{3}-17 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n}}{9383}\)
This specification was found using the strategy pack "Point Placements" and has 48 rules.
Found on July 23, 2021.Finding the specification took 7 seconds.
Copy 48 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right) F_{41}\! \left(x \right) F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{45}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{44}\! \left(x \right) &= 0\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
\end{align*}\)