Av(1342, 2143, 2431, 4213)
Generating Function
\(\displaystyle \frac{3 x^{7}-12 x^{6}+23 x^{5}-39 x^{4}+43 x^{3}-26 x^{2}+8 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 20, 61, 173, 472, 1265, 3364, 8913, 23563, 62186, 163874, 431286, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)-3 x^{7}+12 x^{6}-23 x^{5}+39 x^{4}-43 x^{3}+26 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 173\)
\(\displaystyle a \! \left(7\right) = 472\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{6}-n^{2}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-\frac{7 n}{6}+4, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 173\)
\(\displaystyle a \! \left(7\right) = 472\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{6}-n^{2}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-\frac{7 n}{6}+4, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(3 \sqrt{5}-3\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{6}+\frac{\left(-3 \sqrt{5}-3\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{6}+\frac{n^{3}}{6}-n^{2}+\frac{5 n}{6}-\\2^{n -1}+1 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 71 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 71 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{34}\! \left(x \right) &= 0\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{39}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{64}\! \left(x \right)\\
\end{align*}\)