Av(1342, 2143, 2413, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x^{5}-6 x^{4}+12 x^{3}-13 x^{2}+6 x -1\right)}{\left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 202, 606, 1775, 5117, 14591, 41276, 116047, 324631, 904280, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3} F \! \left(x \right)+\left(2 x -1\right) \left(x^{5}-6 x^{4}+12 x^{3}-13 x^{2}+6 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 65\)
\(\displaystyle a \! \left(6\right) = 202\)
\(\displaystyle a \! \left(n +4\right) = -a \! \left(n \right)+6 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right)-\frac{\left(n +2\right) \left(n -1\right)}{2}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left(-5 n -29\right) \sqrt{5}+15 n +75\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{50}+\frac{\left(\left(5 n +29\right) \sqrt{5}+15 n +75\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{50}-\frac{n^{2}}{2}+\frac{3 n}{2}-2\)

This specification was found using the strategy pack "Point Placements" and has 26 rules.

Found on July 23, 2021.

Finding the specification took 6 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 26 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{21}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{10}\! \left(x \right) F_{24}\! \left(x \right)\\ \end{align*}\)