Av(1342, 2143, 2341, 3142)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{5}-2 x^{4}+6 x^{3}-11 x^{2}+6 x -1}{\left(x^{2}-3 x +1\right) \left(x^{3}-3 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 215, 695, 2235, 7159, 22859, 72804, 231395, 734208, 2326397, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)-x^{5}+2 x^{4}-6 x^{3}+11 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)-6 a \! \left(n +1\right)+14 a \! \left(n +2\right)-16 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-15 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}-\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}+31 \,\mathrm{I} \,3^{\frac{5}{6}}-31 \,3^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+7440-255 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) \sqrt{31}-\frac{155 \,\mathrm{I} \,3^{\frac{1}{6}}}{17}-\frac{155 \,3^{\frac{2}{3}}}{51}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{11160}\\+\\\frac{\left(15 \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}+31 \,\mathrm{I} \,3^{\frac{5}{6}}+31 \,3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+7440+255 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{155 \,\mathrm{I} \,3^{\frac{1}{6}}}{17}+\frac{155 \,3^{\frac{2}{3}}}{51}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{11160}\\+\\\frac{\left(-10 \,2^{\frac{2}{3}} \left(\sqrt{31}\, 3^{\frac{5}{6}}+93 \,3^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+7440+510 \,2^{\frac{1}{3}} \left(3^{\frac{1}{6}} \sqrt{31}-\frac{155 \,3^{\frac{2}{3}}}{51}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}}{11160}\\+\frac{\left(4464 \sqrt{5}-11160\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{11160}-\frac{2 \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \left(\sqrt{5}+\frac{5}{2}\right)}{5} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 71 rules.

Found on July 23, 2021.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 71 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{10}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{10}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{10}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{10}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{10}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{10}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{48}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{10}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{52}\! \left(x \right)+F_{65}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{10}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{10}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{10}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{60}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{52}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{10}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{10}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{65}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{10}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{10}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{10}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{51}\! \left(x \right)\\ \end{align*}\)