Av(1342, 1432, 2314, 3412)
Generating Function
\(\displaystyle -\frac{3 x^{6}-13 x^{5}+24 x^{4}-29 x^{3}+20 x^{2}-7 x +1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 177, 479, 1261, 3283, 8526, 22166, 57742, 150686, 393745, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{5} F \! \left(x \right)+3 x^{6}-13 x^{5}+24 x^{4}-29 x^{3}+20 x^{2}-7 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 177\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-\frac{n \left(n^{3}-2 n^{2}-25 n +2\right)}{24}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 177\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-\frac{n \left(n^{3}-2 n^{2}-25 n +2\right)}{24}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{\left(-24 \sqrt{5}+120\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{\left(24 \sqrt{5}+120\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{n^{4}}{24}-\frac{n^{3}}{4}-\frac{n^{2}}{24}+\frac{n}{4}-1\)
This specification was found using the strategy pack "Point Placements" and has 60 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 60 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= 0\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{18}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{10}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= 2 F_{12}\! \left(x \right)+F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{10}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{10}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{10}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{10}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{10}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{41}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{10}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{36}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{10}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{52}\! \left(x \right)+F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{10}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{12}\! \left(x \right)+F_{32}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{10}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{10}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= 2 F_{12}\! \left(x \right)+F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\
\end{align*}\)