Av(1342, 1423, 2431, 3412)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{5}-4 x^{4}+9 x^{3}-12 x^{2}+6 x -1}{\left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 205, 634, 1935, 5847, 17526, 52183, 154503, 455278, 1336123, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x^{2}-3 x +1\right) F \! \left(x \right)-x^{5}+4 x^{4}-9 x^{3}+12 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 65\)
\(\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-10 a \! \left(n +1\right)+18 a \! \left(n +2\right)-17 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-165 \left(\left(\mathrm{I}+\frac{\sqrt{11}}{33}\right) \sqrt{3}+\frac{\mathrm{I} \sqrt{11}}{11}+1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+10560-660 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{7 \sqrt{11}}{33}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{11}}{11}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{13 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{21120}\\+\\\frac{\left(660 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{7 \sqrt{11}}{33}\right) \sqrt{3}-\frac{7 \,\mathrm{I} \sqrt{11}}{11}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+10560+165 \left(\left(\mathrm{I}-\frac{\sqrt{11}}{33}\right) \sqrt{3}+\frac{\mathrm{I} \sqrt{11}}{11}-1\right) 2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{13 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{21120}\\+\\\frac{\left(\left(280 \sqrt{3}\, 2^{\frac{1}{3}} \sqrt{11}-1320 \,2^{\frac{1}{3}}\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+10560+\left(10 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{11}+330 \,2^{\frac{2}{3}}\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{2}{3}} \left(3 \sqrt{11}\, \sqrt{3}-13\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{21120}\\+\frac{\left(-2112 \sqrt{5}-10560\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{21120}+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \left(\sqrt{5}-5\right)}{10} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 41 rules.

Found on January 17, 2022.

Finding the specification took 5 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 41 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{22}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= x\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right) F_{27}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{22}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= 0\\ F_{34}\! \left(x \right) &= F_{22}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{19}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{38}\! \left(x \right)\\ \end{align*}\)