Av(1342, 1423, 2341, 3412)
Generating Function
\(\displaystyle -\frac{5 x^{4}-12 x^{3}+13 x^{2}-6 x +1}{\left(3 x -1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 211, 657, 2011, 6095, 18376, 55256, 165942, 498056, 1494465, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(3 x -1\right) \left(x -1\right)^{4} F \! \left(x \right)+5 x^{4}-12 x^{3}+13 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +1\right) = 3 a \! \left(n \right)+\frac{\left(n -2\right) \left(n^{2}-n +6\right)}{6}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +1\right) = 3 a \! \left(n \right)+\frac{\left(n -2\right) \left(n^{2}-n +6\right)}{6}, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{11}{16}-\frac{2 n}{3}+\frac{n^{2}}{8}-\frac{n^{3}}{12}+\frac{5 \,3^{n}}{16}\)
This specification was found using the strategy pack "Point Placements" and has 37 rules.
Found on July 23, 2021.Finding the specification took 5 seconds.
Copy 37 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 0\\
F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{13}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{13}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{2}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{11}\! \left(x \right) F_{18}\! \left(x \right)\\
\end{align*}\)