Av(1342, 1423, 1432, 2143)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{2}-x +1-\sqrt{x^{4}-2 x^{3}+7 x^{2}-6 x +1}}{2 x}\)
Counting Sequence
1, 1, 2, 6, 20, 70, 254, 948, 3618, 14058, 55432, 221262, 892346, 3630680, 14885042, ...
Implicit Equation for the Generating Function
\(\displaystyle -x F \left(x \right)^{2}+\left(x^{2}-x +1\right) F \! \left(x \right)+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{5+n}+\frac{\left(1+2 n \right) a \! \left(1+n \right)}{5+n}-\frac{7 \left(n +2\right) a \! \left(n +2\right)}{5+n}+\frac{3 \left(2 n +7\right) a \! \left(n +3\right)}{5+n}, \quad n \geq 4\)

This specification was found using the strategy pack "Point Placements" and has 11 rules.

Found on July 23, 2021.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 11 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{0}\! \left(x \right) F_{10}\! \left(x \right) F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ \end{align*}\)