Av(132, 4231, 4321)
View Raw Data
Generating Function
x4x3+4x23x+1(x1)4
Counting Sequence
1, 1, 2, 5, 12, 25, 46, 77, 120, 177, 250, 341, 452, 585, 742, ...
Implicit Equation for the Generating Function
(x1)4F(x)x4+x34x2+3x1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=5
a(4)=12
a(n)=n(n23n+5)3,n5
Explicit Closed Form
{1n=0n(n23n+5)3otherwise

This specification was found using the strategy pack "Point Placements" and has 30 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Created with Raphaël 2.1.4
9
/
1
4
x
29
/
1
28, 26
/
/
/
/
/
/
14, 15
/
/
/
/
+
27
/
/
/
4
x
25, 26
/
/
/
/
/
/
22
/
/
7, 8
/
/
+
24
/
/
4
x
23
/
/
15
/
/
18
1
+
22
/
/
+
21
/
/
/
16
/
/
+
20
/
/
/
4
x
19
/
/
/
18
1
+
17
/
1
14, 15
/
/
/
/
7, 8
/
/
+
16
/
/
4
x
14, 15
/
/
/
/
7, 8
/
/
+
13
/
/
6
/
+
12
/
/
4
x
10, 11
1
/
/
+
9
/
1
6
/
4
x
7, 8
/
/
1
+
6
/
+
5
/
1
4
x
2, 3
1
/
1
1
+
0
1

Copy 30 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F6(x)+F9(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F6(x)F9(x)=F10(x)+F17(x)F10(x)=F11(x)F11(x)=F12(x)F4(x)F12(x)=F13(x)+F6(x)F13(x)=F14(x)+F7(x)F14(x)=F15(x)F15(x)=F16(x)F4(x)F16(x)=F14(x)+F7(x)F17(x)=F18(x)+F19(x)+F29(x)F18(x)=0F19(x)=F20(x)F4(x)F20(x)=F16(x)+F21(x)F21(x)=F22(x)+F25(x)F22(x)=F15(x)+F18(x)+F23(x)F23(x)=F24(x)F4(x)F24(x)=F22(x)+F7(x)F25(x)=F26(x)F26(x)=F27(x)F4(x)F27(x)=F14(x)+F28(x)F28(x)=F26(x)F29(x)=F4(x)F9(x)