Av(132, 3421, 4231)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{5}-3 x^{4}+9 x^{3}-10 x^{2}+5 x -1}{\left(2 x -1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 5, 12, 26, 52, 99, 184, 340, 632, 1189, 2268, 4382, 8556, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x -1\right)^{4} F \! \left(x \right)-x^{5}+3 x^{4}-9 x^{3}+10 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(5\right) = 26\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)-\frac{n \left(-1+n \right) \left(n -5\right)}{6}, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}+2^{-1+n} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 37 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 37 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{21}\! \left(x \right) &= 0\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}\)