Av(132, 3241, 4321)
Generating Function
\(\displaystyle -\frac{2 x^{4}-5 x^{3}+7 x^{2}-4 x +1}{\left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{5} F \! \left(x \right)+2 x^{4}-5 x^{3}+7 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(n \right) = \frac{\left(n^{2}-n +4\right) \left(n^{2}-n +6\right)}{24}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(n \right) = \frac{\left(n^{2}-n +4\right) \left(n^{2}-n +6\right)}{24}, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{\left(n^{2}-n +4\right) \left(n^{2}-n +6\right)}{24}\)
This specification was found using the strategy pack "Point Placements" and has 30 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 30 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
\end{align*}\)