###### Av(132, 3214)
Generating Function
$$\displaystyle \frac{\left(x -1\right)^{3}}{3 x^{3}-5 x^{2}+4 x -1}$$
Counting Sequence
1, 1, 2, 5, 13, 33, 82, 202, 497, 1224, 3017, 7439, 18343, 45228, 111514, ...
Implicit Equation for the Generating Function
$$\displaystyle \left(3 x^{3}-5 x^{2}+4 x -1\right) F \! \left(x \right)-\left(x -1\right)^{3} = 0$$
Recurrence
$$\displaystyle a \! \left(0\right) = 1$$
$$\displaystyle a \! \left(1\right) = 1$$
$$\displaystyle a \! \left(2\right) = 2$$
$$\displaystyle a \! \left(3\right) = 5$$
$$\displaystyle a \! \left(n +3\right) = 3 a \! \left(n \right)-5 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 4$$
Explicit Closed Form
$$\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-589 \,2^{\frac{1}{3}} \left(\left(i-\frac{51 \sqrt{31}}{589}\right) \sqrt{3}-\frac{153 i \sqrt{31}}{589}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+60016+682 \,2^{\frac{2}{3}} \left(\left(i-\frac{6 \sqrt{31}}{31}\right) \sqrt{3}+\frac{18 i \sqrt{31}}{31}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{47 \,2^{\frac{1}{3}} \left(\left(i-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 i \sqrt{31}}{47}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{i \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{270072}\\+\\\frac{\left(-682 \,2^{\frac{2}{3}} \left(\left(i+\frac{6 \sqrt{31}}{31}\right) \sqrt{3}+\frac{18 i \sqrt{31}}{31}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+60016+589 \left(\left(i+\frac{51 \sqrt{31}}{589}\right) \sqrt{3}-\frac{153 i \sqrt{31}}{589}-1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{47 \,2^{\frac{1}{3}} \left(\left(i+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 i \sqrt{31}}{47}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{i \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{270072}\\-\\\frac{17 \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n} \left(-\frac{44 \,2^{\frac{2}{3}} \left(\sqrt{31}\, \sqrt{3}+\frac{31}{6}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{17}-\frac{30008}{51}+2^{\frac{1}{3}} \left(\sqrt{31}\, \sqrt{3}-\frac{589}{51}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right)}{45012} & \text{otherwise} \end{array}\right.$$

### This specification was found using the strategy pack "Point Placements" and has 24 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 24 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{11}\! \left(x \right) &= 0\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}