Av(132, 213, 3421)
Generating Function
\(\displaystyle -\frac{2 x^{2}-2 x +1}{\left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{3} F \! \left(x \right)+2 x^{2}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n \right) = \frac{1}{2} n^{2}-\frac{1}{2} n +1, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n \right) = \frac{1}{2} n^{2}-\frac{1}{2} n +1, \quad n \geq 3\)
Explicit Closed Form
\(\displaystyle \frac{1}{2} n^{2}-\frac{1}{2} n +1\)
This specification was found using the strategy pack "Point Placements" and has 14 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 14 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)\\
\end{align*}\)