Av(132, 213, 2341)
Generating Function
\(\displaystyle \frac{x^{3}-x +1}{\left(x -1\right) \left(x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+x -1\right) F \! \left(x \right)-x^{3}+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 4\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)+1, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 4\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)+1, \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-3 \sqrt{5}+5\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10}-1+\frac{\left(3 \sqrt{5}+5\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 13 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 13 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{2}\! \left(x \right)\\
\end{align*}\)