Av(132, 1234, 2314, 2341, 3124, 3214, 3421, 4213, 4231, 4321)
Generating Function
\(\displaystyle \left(x +1\right) \left(x^{5}+2 x^{4}+3 x^{3}+2 x^{2}+1\right)\)
Counting Sequence
1, 1, 2, 5, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
Implicit Equation for the Generating Function
\(\displaystyle -F \! \left(x \right)+\left(x +1\right) \left(x^{5}+2 x^{4}+3 x^{3}+2 x^{2}+1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 5\)
\(\displaystyle a \! \left(5\right) = 3\)
\(\displaystyle a \! \left(6\right) = 1\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 5\)
\(\displaystyle a \! \left(5\right) = 3\)
\(\displaystyle a \! \left(6\right) = 1\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ 5 & n =3\text{ or } n =4 \\ 3 & n =5 \\ 1 & n =6 \\ 0 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 24 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 24 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{17}\! \left(x \right) &= 0\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)\\
\end{align*}\)