Av(132, 1234, 2314)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x -1\right)^{2}}{x^{3}-2 x^{2}+3 x -1}\)
Counting Sequence
1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right) F \! \left(x \right)+\left(x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-2 a \! \left(n +1\right)+3 a \! \left(n +2\right), \quad n \geq 3\)
Explicit Closed Form
\(\displaystyle -\frac{2 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{23}+\frac{8 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{23}+\frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{23}\)

This specification was found using the strategy pack "Point Placements" and has 31 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 31 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{12}\! \left(x \right) &= 0\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 2 F_{12}\! \left(x \right)+F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{27}\! \left(x \right)\\ \end{align*}\)