Av(132, 1234, 2134, 2314, 2341, 3124, 3214, 3412, 3421, 4123, 4312)
Generating Function
\(\displaystyle \frac{x^{6}+2 x^{5}+x^{4}-3 x^{3}-x^{2}-1}{x -1}\)
Counting Sequence
1, 1, 2, 5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(1-x \right) F \! \left(x \right)+x^{6}+2 x^{5}+x^{4}-3 x^{3}-x^{2}-1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 4\)
\(\displaystyle a \! \left(5\right) = 2\)
\(\displaystyle a \! \left(6\right) = 1\)
\(\displaystyle a \! \left(n \right) = 1, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 4\)
\(\displaystyle a \! \left(5\right) = 2\)
\(\displaystyle a \! \left(6\right) = 1\)
\(\displaystyle a \! \left(n \right) = 1, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}2 & n =2 \\ 5 & n =3 \\ 4 & n =4 \\ 2 & n =5 \\ 1 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 31 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 31 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= x^{2}\\
F_{24}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{4}\! \left(x \right)\\
\end{align*}\)