Av(132, 1234, 2134, 2314)
Generating Function
\(\displaystyle \frac{x -1}{x^{3}+2 x -1}\)
Counting Sequence
1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+2 x -1\right) F \! \left(x \right)+1-x = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n \right) = -2 a \! \left(n +2\right)+a \! \left(n +3\right), \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n \right) = -2 a \! \left(n +2\right)+a \! \left(n +3\right), \quad n \geq 3\)
Explicit Closed Form
\(\displaystyle -\frac{7 \left(\left(\left(-3 i \sqrt{59}-9\right) \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+27 \left(i+\frac{\sqrt{59}}{9}\right) 3^{\frac{1}{6}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-24 i 2^{\frac{1}{3}} 3^{\frac{5}{6}}-24 \,6^{\frac{1}{3}}\right)^{n} \left(\frac{61 \left(i \sqrt{59}\, 3^{\frac{2}{3}}-\frac{885 i 3^{\frac{1}{6}}}{61}-\frac{1121 \,3^{\frac{2}{3}}}{61}\right) 2^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{84}+\left(\left(i 3^{\frac{1}{3}}-\frac{38 \,3^{\frac{5}{6}}}{21}\right) \sqrt{59}+\frac{59 i 3^{\frac{5}{6}}}{21}\right) 2^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(18+2 \sqrt{59}\, \sqrt{3}\right)^{\frac{n}{3}} \left(\frac{\left(-i \sqrt{59}+3\right) \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+9 \left(i-\frac{\sqrt{59}}{9}\right) 3^{\frac{1}{6}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-8 i 2^{\frac{1}{3}} 3^{\frac{5}{6}}+8 \,6^{\frac{1}{3}}}{\left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{59}-8 \,6^{\frac{1}{3}}-3 \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}\right)^{n}+\frac{4 \left(\frac{57 \sqrt{59}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{16}+i \sqrt{59}-767\right) \left(\left(-3 i \sqrt{59}-9\right) \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+27 \left(i+\frac{\sqrt{59}}{9}\right) 3^{\frac{1}{6}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-24 i 2^{\frac{1}{3}} 3^{\frac{5}{6}}-24 \,6^{\frac{1}{3}}\right)^{n} \left(18+2 \sqrt{59}\, \sqrt{3}\right)^{\frac{n}{3}} \left(-1\right)^{n} \left(\frac{\left(i \sqrt{59}-3\right) \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-9 \left(i-\frac{\sqrt{59}}{9}\right) 3^{\frac{1}{6}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+8 i 2^{\frac{1}{3}} 3^{\frac{5}{6}}-8 \,6^{\frac{1}{3}}}{\left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{59}-8 \,6^{\frac{1}{3}}-3 \left(81+9 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}\right)^{n}}{7}+\left(\frac{29 \,2^{\frac{1}{3}} \left(\left(i 3^{\frac{2}{3}}+\frac{3 \,3^{\frac{1}{6}}}{58}\right) \sqrt{59}-\frac{531 i 3^{\frac{1}{6}}}{29}+\frac{59 \,3^{\frac{2}{3}}}{58}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{21}+\frac{45 \,2^{\frac{2}{3}} \left(\left(i 3^{\frac{1}{3}}+\frac{17 \,3^{\frac{5}{6}}}{135}\right) \sqrt{59}+\frac{59 i 3^{\frac{5}{6}}}{135}-\frac{59 \,3^{\frac{1}{3}}}{45}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{14}-\frac{4 i \sqrt{59}}{7}-\frac{3068}{7}\right) \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 i \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(6 i \sqrt{59}-18\right) 18^{\frac{1}{3}}-54 i 2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \,2^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}-\frac{2832 \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 i \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-6 i \sqrt{59}-18\right) 18^{\frac{1}{3}}+54 i 2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \,2^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{7}\right) \left(\left(-3 i \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+9 \left(i+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 i \sqrt{3}-48\right)^{-n} \left(\frac{\left(3 i \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{\left(i-\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{i \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{3 \left(\left(i 3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) \sqrt{59}-\frac{59 i 3^{\frac{1}{6}}}{3}-\frac{59 \,3^{\frac{2}{3}}}{9}\right) 2^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{8}+236+2^{\frac{2}{3}} \sqrt{59}\, \left(i 3^{\frac{1}{3}}-\frac{3^{\frac{5}{6}}}{3}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}\right)}{2005056}\)
This specification was found using the strategy pack "Point Placements" and has 28 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 28 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{12}\! \left(x \right) &= 0\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\
\end{align*}\)