Av(13254, 13524, 13542, 15324, 15342, 15432, 31254, 31524, 31542, 32154)
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2617, 13202, 68041, 357568, 1909850, 10335322, 56530105, 311977408, ...
This specification was found using the strategy pack "Point And Col Placements Req Corrob Symmetries" and has 580 rules.
Finding the specification took 62684 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 580 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{579}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{22}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{22}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= \frac{F_{10}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{566}\! \left(x \right)\\
F_{12}\! \left(x \right) &= -F_{438}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{15}\! \left(x \right) &= -F_{557}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{485}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{483}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= x\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{22}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{35}\! \left(x \right) &= 0\\
F_{36}\! \left(x \right) &= F_{22}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{22}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{22}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{22}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{46}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{22}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{22}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{50}\! \left(x \right)+F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{22}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{22}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{22}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{22}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{22}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{19}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{22}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{65}\! \left(x \right) &= x^{2}\\
F_{66}\! \left(x \right) &= x^{2}\\
F_{67}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{68}\! \left(x \right)+F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{22}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{22}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{22}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{72}\! \left(x \right)+F_{73}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{22}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{22}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{22}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{78}\! \left(x \right)+F_{79}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{22}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{22}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{22}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{84}\! \left(x \right)+F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{22}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{22}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{22}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{89}\! \left(x \right)+F_{90}\! \left(x \right)+F_{92}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{22}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{22}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{22}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{22}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{481}\! \left(x \right)+F_{482}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{22}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{2}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= -F_{480}\! \left(x \right)+F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= -F_{137}\! \left(x \right)+F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{19}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{101}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{22}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{35}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{124}\! \left(x \right) &= -F_{130}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= \frac{F_{126}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{129}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{22}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{136}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{118}\! \left(x \right) F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{123}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{137}\! \left(x \right) &= -F_{138}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{0}\! \left(x \right) F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{153}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{150}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{144}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{22}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{157}\! \left(x \right) &= \frac{F_{158}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{160}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{162}\! \left(x \right)+F_{163}\! \left(x \right)+F_{165}\! \left(x \right)+F_{477}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{161}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{166}\! \left(x \right) &= \frac{F_{167}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{167}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{340}\! \left(x \right)-F_{362}\! \left(x \right)-F_{366}\! \left(x \right)+F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= \frac{F_{169}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{169}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{170}\! \left(x \right)-F_{340}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{179}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{174}\! \left(x \right)+F_{175}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{172}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{176}\! \left(x \right) &= -F_{35}\! \left(x \right)-F_{5}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{125}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right) F_{189}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{186}\! \left(x \right) &= \frac{F_{187}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= \frac{F_{176}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{191}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{22}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{209}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{195}\! \left(x \right) &= \frac{F_{196}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{196}\! \left(x \right) &= -F_{164}\! \left(x \right)-F_{199}\! \left(x \right)-F_{200}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{197}\! \left(x \right) &= \frac{F_{198}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{198}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{197}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{201}\! \left(x \right) &= \frac{F_{202}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\
F_{203}\! \left(x \right) &= \frac{F_{204}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\
F_{205}\! \left(x \right) &= -F_{162}\! \left(x \right)-F_{206}\! \left(x \right)-F_{35}\! \left(x \right)+F_{188}\! \left(x \right)\\
F_{206}\! \left(x \right) &= -F_{170}\! \left(x \right)-F_{208}\! \left(x \right)-F_{35}\! \left(x \right)+F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{210}\! \left(x \right)+F_{329}\! \left(x \right)+F_{339}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{245}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{214}\! \left(x \right)+F_{244}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{215}\! \left(x \right) &= \frac{F_{216}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{216}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{217}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{219}\! \left(x \right)\\
F_{219}\! \left(x \right) &= -F_{222}\! \left(x \right)+F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= \frac{F_{221}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{221}\! \left(x \right) &= F_{190}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{2}\! \left(x \right) F_{213}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{22}\! \left(x \right) F_{226}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{227}\! \left(x \right) &= -F_{230}\! \left(x \right)+F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= \frac{F_{229}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{229}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{235}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{242}\! \left(x \right) &= \frac{F_{243}\! \left(x \right)}{F_{22}\! \left(x \right) F_{231}\! \left(x \right)}\\
F_{243}\! \left(x \right) &= F_{219}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{218}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{22}\! \left(x \right) F_{248}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{250}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{246}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{253}\! \left(x \right)\\
F_{253}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{254}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{22}\! \left(x \right) F_{253}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{22}\! \left(x \right) F_{252}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{269}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{35}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{22}\! \left(x \right) F_{261}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)+F_{265}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{22}\! \left(x \right) F_{262}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{266}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{22}\! \left(x \right) F_{263}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{22}\! \left(x \right) F_{265}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{274}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{22}\! \left(x \right) F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{270}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{278}\! \left(x \right)+F_{35}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{22}\! \left(x \right) F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{259}\! \left(x \right)+F_{274}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{22}\! \left(x \right) F_{279}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)+F_{285}\! \left(x \right)\\
F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{281}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{282}\! \left(x \right)+F_{284}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{22}\! \left(x \right) F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{22}\! \left(x \right) F_{280}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{286}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{287}\! \left(x \right)+F_{289}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{22}\! \left(x \right) F_{288}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{286}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{22}\! \left(x \right) F_{281}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{22}\! \left(x \right) F_{285}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{22}\! \left(x \right) F_{293}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)+F_{313}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{295}\! \left(x \right) F_{304}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{300}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{299}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{234}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{303}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{281}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{236}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{311}\! \left(x \right)+F_{312}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{22}\! \left(x \right) F_{306}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{307}\! \left(x \right) &= \frac{F_{308}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{308}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{309}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{22}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{253}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{22}\! \left(x \right) F_{304}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{22}\! \left(x \right) F_{304}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{252}\! \left(x \right) F_{314}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)+F_{319}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{318}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{239}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)+F_{328}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{322}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{323}\! \left(x \right)+F_{324}\! \left(x \right)+F_{326}\! \left(x \right)\\
F_{323}\! \left(x \right) &= F_{22}\! \left(x \right) F_{281}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{22}\! \left(x \right) F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= F_{266}\! \left(x \right)+F_{322}\! \left(x \right)\\
F_{326}\! \left(x \right) &= F_{22}\! \left(x \right) F_{327}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{241}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{22}\! \left(x \right) F_{330}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= F_{332}\! \left(x \right)\\
F_{332}\! \left(x \right) &= \frac{F_{333}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{333}\! \left(x \right) &= -F_{336}\! \left(x \right)-F_{337}\! \left(x \right)-F_{35}\! \left(x \right)+F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= -F_{242}\! \left(x \right)+F_{307}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{211}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{22}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{209}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{22}\! \left(x \right) F_{341}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{476}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{162}\! \left(x \right)+F_{169}\! \left(x \right)+F_{343}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{22}\! \left(x \right) F_{344}\! \left(x \right)\\
F_{344}\! \left(x \right) &= F_{345}\! \left(x \right)+F_{475}\! \left(x \right)\\
F_{345}\! \left(x \right) &= -F_{346}\! \left(x \right)+F_{168}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{347}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{349}\! \left(x \right)+F_{35}\! \left(x \right)+F_{469}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{22}\! \left(x \right) F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= -F_{351}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{352}\! \left(x \right)+F_{353}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{352}\! \left(x \right) &= F_{22}\! \left(x \right) F_{351}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{22}\! \left(x \right) F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)\\
F_{356}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{351}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{358}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{35}\! \left(x \right)+F_{352}\! \left(x \right)\\
F_{359}\! \left(x \right) &= F_{22}\! \left(x \right) F_{360}\! \left(x \right)\\
F_{360}\! \left(x \right) &= \frac{F_{361}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{361}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{162}\! \left(x \right)-F_{343}\! \left(x \right)-F_{362}\! \left(x \right)+F_{344}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{22}\! \left(x \right) F_{363}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{364}\! \left(x \right) &= -F_{413}\! \left(x \right)+F_{365}\! \left(x \right)\\
F_{365}\! \left(x \right) &= \frac{F_{366}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{366}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{367}\! \left(x \right)-F_{406}\! \left(x \right)-F_{410}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{367}\! \left(x \right) &= F_{22}\! \left(x \right) F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{369}\! \left(x \right)\\
F_{369}\! \left(x \right) &= F_{370}\! \left(x \right)\\
F_{370}\! \left(x \right) &= F_{22}\! \left(x \right) F_{371}\! \left(x \right)\\
F_{371}\! \left(x \right) &= F_{372}\! \left(x \right)+F_{401}\! \left(x \right)\\
F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)+F_{400}\! \left(x \right)\\
F_{373}\! \left(x \right) &= \frac{F_{374}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{374}\! \left(x \right) &= -F_{380}\! \left(x \right)-F_{382}\! \left(x \right)-F_{384}\! \left(x \right)-F_{399}\! \left(x \right)-F_{4}\! \left(x \right)+F_{375}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{376}\! \left(x \right)+F_{378}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{377}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{195}\! \left(x \right) F_{22}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{380}\! \left(x \right) &= F_{381}\! \left(x \right)\\
F_{381}\! \left(x \right) &= F_{166}\! \left(x \right) F_{22}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{166}\! \left(x \right) F_{209}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{384}\! \left(x \right) &= -F_{393}\! \left(x \right)-F_{395}\! \left(x \right)-F_{397}\! \left(x \right)-F_{398}\! \left(x \right)-F_{4}\! \left(x \right)+F_{385}\! \left(x \right)\\
F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)+F_{390}\! \left(x \right)\\
F_{386}\! \left(x \right) &= F_{387}\! \left(x \right)+F_{388}\! \left(x \right)\\
F_{387}\! \left(x \right) &= F_{342}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\
F_{389}\! \left(x \right) &= F_{201}\! \left(x \right) F_{209}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{390}\! \left(x \right) &= F_{391}\! \left(x \right)\\
F_{391}\! \left(x \right) &= F_{392}\! \left(x \right)\\
F_{392}\! \left(x \right) &= F_{201}\! \left(x \right) F_{22}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{393}\! \left(x \right) &= F_{394}\! \left(x \right)\\
F_{394}\! \left(x \right) &= F_{22}\! \left(x \right) F_{242}\! \left(x \right) F_{360}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)\\
F_{396}\! \left(x \right) &= F_{209}\! \left(x \right) F_{22}\! \left(x \right) F_{360}\! \left(x \right)\\
F_{397}\! \left(x \right) &= F_{161}\! \left(x \right) F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{398}\! \left(x \right) &= F_{22}\! \left(x \right) F_{344}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{22}\! \left(x \right) F_{341}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{400}\! \left(x \right) &= F_{184}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{401}\! \left(x \right) &= F_{4}\! \left(x \right) F_{402}\! \left(x \right)\\
F_{402}\! \left(x \right) &= -F_{403}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{403}\! \left(x \right) &= F_{350}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{404}\! \left(x \right) &= \frac{F_{405}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{405}\! \left(x \right) &= F_{358}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{22}\! \left(x \right) F_{407}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{408}\! \left(x \right)\\
F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)\\
F_{409}\! \left(x \right) &= F_{195}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{410}\! \left(x \right) &= F_{22}\! \left(x \right) F_{411}\! \left(x \right)\\
F_{411}\! \left(x \right) &= F_{341}\! \left(x \right)+F_{412}\! \left(x \right)\\
F_{412}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{413}\! \left(x \right) &= F_{414}\! \left(x \right)+F_{415}\! \left(x \right)\\
F_{414}\! \left(x \right) &= F_{346}\! \left(x \right)\\
F_{415}\! \left(x \right) &= F_{416}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{22}\! \left(x \right) F_{417}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)+F_{422}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{419}\! \left(x \right) F_{421}\! \left(x \right)\\
F_{419}\! \left(x \right) &= F_{402}\! \left(x \right)+F_{420}\! \left(x \right)\\
F_{420}\! \left(x \right) &= F_{172}\! \left(x \right)+F_{183}\! \left(x \right)\\
F_{421}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)\\
F_{423}\! \left(x \right) &= \frac{F_{424}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{424}\! \left(x \right) &= -F_{460}\! \left(x \right)-F_{462}\! \left(x \right)-2 F_{35}\! \left(x \right)+F_{425}\! \left(x \right)\\
F_{425}\! \left(x \right) &= F_{426}\! \left(x \right)\\
F_{426}\! \left(x \right) &= F_{195}\! \left(x \right) F_{22}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{427}\! \left(x \right) &= \frac{F_{428}\! \left(x \right)}{F_{22}\! \left(x \right) F_{231}\! \left(x \right)}\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= -F_{433}\! \left(x \right)+F_{430}\! \left(x \right)\\
F_{430}\! \left(x \right) &= \frac{F_{431}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{431}\! \left(x \right) &= F_{432}\! \left(x \right)\\
F_{432}\! \left(x \right) &= -F_{421}\! \left(x \right)+F_{348}\! \left(x \right)\\
F_{433}\! \left(x \right) &= F_{434}\! \left(x \right)+F_{458}\! \left(x \right)\\
F_{434}\! \left(x \right) &= F_{2}\! \left(x \right) F_{435}\! \left(x \right)\\
F_{435}\! \left(x \right) &= F_{436}\! \left(x \right)+F_{447}\! \left(x \right)\\
F_{436}\! \left(x \right) &= \frac{F_{437}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{437}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{439}\! \left(x \right)+F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{439}\! \left(x \right) &= F_{22}\! \left(x \right) F_{440}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)+F_{444}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{442}\! \left(x \right)+F_{443}\! \left(x \right)\\
F_{442}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{443}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{444}\! \left(x \right) &= F_{445}\! \left(x \right)+F_{446}\! \left(x \right)\\
F_{445}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{446}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{447}\! \left(x \right) &= F_{448}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{22}\! \left(x \right) F_{449}\! \left(x \right)\\
F_{449}\! \left(x \right) &= F_{450}\! \left(x \right)+F_{457}\! \left(x \right)\\
F_{450}\! \left(x \right) &= F_{451}\! \left(x \right)+F_{456}\! \left(x \right)\\
F_{451}\! \left(x \right) &= F_{28}\! \left(x \right) F_{452}\! \left(x \right)\\
F_{452}\! \left(x \right) &= F_{453}\! \left(x \right)+F_{455}\! \left(x \right)\\
F_{453}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{454}\! \left(x \right)\\
F_{454}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{455}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{115}\! \left(x \right) F_{453}\! \left(x \right)\\
F_{457}\! \left(x \right) &= F_{26}\! \left(x \right) F_{453}\! \left(x \right)\\
F_{458}\! \left(x \right) &= F_{459}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{22}\! \left(x \right) F_{226}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{460}\! \left(x \right) &= F_{461}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{166}\! \left(x \right) F_{22}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{462}\! \left(x \right) &= F_{463}\! \left(x \right)\\
F_{463}\! \left(x \right) &= -F_{466}\! \left(x \right)-2 F_{35}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{201}\! \left(x \right) F_{22}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{467}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{22}\! \left(x \right) F_{360}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{409}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{471}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{22}\! \left(x \right) F_{472}\! \left(x \right)\\
F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)+F_{474}\! \left(x \right)\\
F_{473}\! \left(x \right) &= F_{183}\! \left(x \right) F_{421}\! \left(x \right)\\
F_{474}\! \left(x \right) &= F_{425}\! \left(x \right)\\
F_{475}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{476}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{477}\! \left(x \right) &= F_{22}\! \left(x \right) F_{478}\! \left(x \right)\\
F_{478}\! \left(x \right) &= F_{360}\! \left(x \right)+F_{479}\! \left(x \right)\\
F_{479}\! \left(x \right) &= F_{188}\! \left(x \right)\\
F_{480}\! \left(x \right) &= F_{140}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{481}\! \left(x \right) &= F_{22}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{482}\! \left(x \right) &= F_{22}\! \left(x \right) F_{226}\! \left(x \right)\\
F_{483}\! \left(x \right) &= F_{484}\! \left(x \right)\\
F_{484}\! \left(x \right) &= F_{22}\! \left(x \right) F_{358}\! \left(x \right)\\
F_{485}\! \left(x \right) &= F_{486}\! \left(x \right)\\
F_{486}\! \left(x \right) &= F_{22}\! \left(x \right) F_{487}\! \left(x \right)\\
F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)+F_{539}\! \left(x \right)\\
F_{488}\! \left(x \right) &= F_{489}\! \left(x \right)+F_{531}\! \left(x \right)\\
F_{489}\! \left(x \right) &= F_{490}\! \left(x \right)\\
F_{490}\! \left(x \right) &= F_{17}\! \left(x \right) F_{491}\! \left(x \right)\\
F_{491}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{492}\! \left(x \right)\\
F_{492}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{493}\! \left(x \right)\\
F_{493}\! \left(x \right) &= F_{494}\! \left(x \right)\\
F_{494}\! \left(x \right) &= F_{22}\! \left(x \right) F_{495}\! \left(x \right)\\
F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)+F_{510}\! \left(x \right)\\
F_{496}\! \left(x \right) &= F_{497}\! \left(x \right)\\
F_{497}\! \left(x \right) &= F_{22}\! \left(x \right) F_{498}\! \left(x \right)\\
F_{498}\! \left(x \right) &= F_{499}\! \left(x \right)+F_{502}\! \left(x \right)\\
F_{499}\! \left(x \right) &= F_{118}\! \left(x \right) F_{500}\! \left(x \right)\\
F_{500}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{501}\! \left(x \right)\\
F_{501}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{502}\! \left(x \right) &= F_{28}\! \left(x \right) F_{503}\! \left(x \right)\\
F_{503}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{504}\! \left(x \right)\\
F_{504}\! \left(x \right) &= F_{505}\! \left(x \right)+F_{507}\! \left(x \right)\\
F_{505}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{506}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{506}\! \left(x \right) &= F_{115}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{507}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{508}\! \left(x \right)+F_{509}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{508}\! \left(x \right) &= F_{121}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{509}\! \left(x \right) &= F_{22}\! \left(x \right) F_{504}\! \left(x \right)\\
F_{510}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{511}\! \left(x \right)+F_{515}\! \left(x \right)\\
F_{511}\! \left(x \right) &= F_{22}\! \left(x \right) F_{512}\! \left(x \right)\\
F_{512}\! \left(x \right) &= \frac{F_{513}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{513}\! \left(x \right) &= F_{514}\! \left(x \right)\\
F_{514}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{215}\! \left(x \right)\\
F_{515}\! \left(x \right) &= F_{516}\! \left(x \right)\\
F_{516}\! \left(x \right) &= F_{22}\! \left(x \right) F_{517}\! \left(x \right)\\
F_{517}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{518}\! \left(x \right)+F_{526}\! \left(x \right)+F_{527}\! \left(x \right)\\
F_{518}\! \left(x \right) &= F_{22}\! \left(x \right) F_{519}\! \left(x \right)\\
F_{519}\! \left(x \right) &= F_{520}\! \left(x \right)+F_{521}\! \left(x \right)\\
F_{520}\! \left(x \right) &= F_{307}\! \left(x \right) F_{440}\! \left(x \right)\\
F_{521}\! \left(x \right) &= F_{522}\! \left(x \right)\\
F_{522}\! \left(x \right) &= F_{135}\! \left(x \right) F_{523}\! \left(x \right)\\
F_{523}\! \left(x \right) &= 2 F_{35}\! \left(x \right)+F_{524}\! \left(x \right)+F_{525}\! \left(x \right)\\
F_{524}\! \left(x \right) &= F_{22}\! \left(x \right) F_{523}\! \left(x \right)\\
F_{525}\! \left(x \right) &= F_{22}\! \left(x \right) F_{242}\! \left(x \right)\\
F_{526}\! \left(x \right) &= F_{22}\! \left(x \right) F_{517}\! \left(x \right)\\
F_{527}\! \left(x \right) &= F_{22}\! \left(x \right) F_{500}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{528}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{529}\! \left(x \right)+F_{530}\! \left(x \right)\\
F_{529}\! \left(x \right) &= F_{209}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{530}\! \left(x \right) &= F_{22}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{531}\! \left(x \right) &= F_{532}\! \left(x \right)\\
F_{532}\! \left(x \right) &= F_{22}\! \left(x \right) F_{533}\! \left(x \right)\\
F_{533}\! \left(x \right) &= \frac{F_{534}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{534}\! \left(x \right) &= F_{535}\! \left(x \right)\\
F_{535}\! \left(x \right) &= -F_{538}\! \left(x \right)+F_{536}\! \left(x \right)\\
F_{536}\! \left(x \right) &= \frac{F_{537}\! \left(x \right)}{F_{22}\! \left(x \right)}\\
F_{537}\! \left(x \right) &= F_{493}\! \left(x \right)\\
F_{538}\! \left(x \right) &= F_{128}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{539}\! \left(x \right) &= F_{540}\! \left(x \right)\\
F_{540}\! \left(x \right) &= F_{541}\! \left(x \right)+F_{545}\! \left(x \right)\\
F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\
F_{542}\! \left(x \right) &= F_{0}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)\\
F_{544}\! \left(x \right) &= F_{22}\! \left(x \right) F_{355}\! \left(x \right)\\
F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)\\
F_{546}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{547}\! \left(x \right)+F_{549}\! \left(x \right)\\
F_{547}\! \left(x \right) &= F_{548}\! \left(x \right)\\
F_{548}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{28}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{549}\! \left(x \right) &= F_{550}\! \left(x \right)\\
F_{550}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right) F_{551}\! \left(x \right)\\
F_{551}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{552}\! \left(x \right)\\
F_{552}\! \left(x \right) &= F_{553}\! \left(x \right)\\
F_{553}\! \left(x \right) &= F_{22}\! \left(x \right) F_{554}\! \left(x \right)\\
F_{554}\! \left(x \right) &= F_{555}\! \left(x \right)+F_{556}\! \left(x \right)\\
F_{555}\! \left(x \right) &= F_{28}\! \left(x \right) F_{355}\! \left(x \right)\\
F_{556}\! \left(x \right) &= F_{551}\! \left(x \right)\\
F_{557}\! \left(x \right) &= F_{558}\! \left(x \right)\\
F_{558}\! \left(x \right) &= F_{22}\! \left(x \right) F_{559}\! \left(x \right)\\
F_{559}\! \left(x \right) &= F_{560}\! \left(x \right)+F_{564}\! \left(x \right)\\
F_{560}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{561}\! \left(x \right)+F_{563}\! \left(x \right)\\
F_{561}\! \left(x \right) &= F_{562}\! \left(x \right)\\
F_{562}\! \left(x \right) &= F_{22}\! \left(x \right) F_{242}\! \left(x \right) F_{351}\! \left(x \right)\\
F_{563}\! \left(x \right) &= F_{22}\! \left(x \right) F_{391}\! \left(x \right)\\
F_{564}\! \left(x \right) &= F_{565}\! \left(x \right)\\
F_{565}\! \left(x \right) &= F_{22}\! \left(x \right) F_{242}\! \left(x \right) F_{554}\! \left(x \right)\\
F_{566}\! \left(x \right) &= F_{567}\! \left(x \right)+F_{568}\! \left(x \right)\\
F_{567}\! \left(x \right) &= F_{189}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{568}\! \left(x \right) &= F_{569}\! \left(x \right)\\
F_{569}\! \left(x \right) &= F_{22}\! \left(x \right) F_{570}\! \left(x \right) F_{578}\! \left(x \right)\\
F_{570}\! \left(x \right) &= F_{227}\! \left(x \right)+F_{571}\! \left(x \right)\\
F_{571}\! \left(x \right) &= F_{572}\! \left(x \right)+F_{575}\! \left(x \right)\\
F_{572}\! \left(x \right) &= F_{573}\! \left(x \right)+F_{574}\! \left(x \right)\\
F_{573}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{574}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{575}\! \left(x \right) &= F_{576}\! \left(x \right)+F_{577}\! \left(x \right)\\
F_{576}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{577}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{578}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{528}\! \left(x \right)\\
F_{579}\! \left(x \right) &= F_{22}\! \left(x \right) F_{342}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 77 rules.
Finding the specification took 150 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 77 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{57}\! \left(x \right)+F_{6}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{8}\! \left(x , y_{0}\right)\\
F_{8}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y_{0}\right)+F_{53}\! \left(x , y_{0}\right)+F_{54}\! \left(x , y_{0}\right)+F_{9}\! \left(x , y_{0}\right)\\
F_{9}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{11}\! \left(x \right)\\
F_{10}\! \left(x , y_{0}\right) &= -\frac{-F_{8}\! \left(x , y_{0}\right) y_{0}+F_{8}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{13}\! \left(x , y_{0}\right)\\
F_{13}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , 1, y_{0}\right)\\
F_{14}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{15}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{15}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{36}\! \left(x , y_{0}, y_{1}\right)+F_{41}\! \left(x , y_{0}, y_{1}\right)+F_{51}\! \left(x , y_{0}, y_{1}\right)\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{17}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{19}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{19}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{19}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{20}\! \left(x , y_{0}\right) y_{0}-F_{20}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{20}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , y_{0}\right)+F_{23}\! \left(x , y_{0}\right)+F_{7}\! \left(x , y_{0}\right)\\
F_{21}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{22}\! \left(x , y_{0}\right)\\
F_{22}\! \left(x , y_{0}\right) &= F_{15}\! \left(x , 1, y_{0}\right)\\
F_{23}\! \left(x , y_{0}\right) &= F_{24}\! \left(x , y_{0}\right) F_{34}\! \left(x , y_{0}\right)\\
F_{24}\! \left(x , y_{0}\right) &= F_{25}\! \left(x , 1, y_{0}\right)\\
F_{25}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x , y_{0}, y_{1}\right)+F_{35}\! \left(x , y_{0}, y_{1}\right)\\
F_{26}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{19}\! \left(x , y_{0}, y_{1}\right)\\
F_{27}\! \left(x , y_{0}, y_{1}\right) &= F_{28}\! \left(x , y_{0}, y_{1}\right) F_{34}\! \left(x , y_{0}\right)\\
F_{28}\! \left(x , y_{0}, y_{1}\right) &= F_{29}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{30}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{30}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{30}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{31}\! \left(x , y_{0}\right) y_{0}-F_{31}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{31}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x , y_{0}\right)+F_{33}\! \left(x , y_{0}\right)\\
F_{32}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{20}\! \left(x , y_{0}\right)\\
F_{33}\! \left(x , y_{0}\right) &= F_{31}\! \left(x , y_{0}\right) F_{34}\! \left(x , y_{0}\right)\\
F_{34}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{35}\! \left(x , y_{0}, y_{1}\right) &= F_{25}\! \left(x , y_{0}, y_{1}\right) F_{34}\! \left(x , y_{1}\right)\\
F_{36}\! \left(x , y_{0}, y_{1}\right) &= F_{37}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{34}\! \left(x , y_{0}\right) F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{39}\! \left(x , 1, y_{0}, y_{1}, y_{2}\right)\\
F_{39}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-F_{40}\! \left(x , y_{0} y_{1}, y_{2}, y_{3}\right) y_{0}+F_{40}\! \left(x , y_{1}, y_{2}, y_{3}\right)}{-1+y_{0}}\\
F_{40}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{30}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{30}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{34}\! \left(x , y_{0}\right) F_{42}\! \left(x , y_{0}, y_{1}\right)\\
F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{43}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{F_{44}\! \left(x , 1, y_{1}, y_{2}\right) y_{1}-F_{44}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{44}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{47}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{17}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{37}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
F_{47}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{34}\! \left(x , y_{1}\right) F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{48}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{44}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{44}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{34}\! \left(x , y_{2}\right) F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{25}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{25}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{34}\! \left(x , y_{1}\right) F_{52}\! \left(x , y_{0}, y_{1}\right)\\
F_{52}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{25}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{25}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{53}\! \left(x , y_{0}\right) &= F_{41}\! \left(x , 1, y_{0}\right)\\
F_{54}\! \left(x , y_{0}\right) &= F_{34}\! \left(x , y_{0}\right) F_{55}\! \left(x , y_{0}\right)\\
F_{55}\! \left(x , y_{0}\right) &= F_{56}\! \left(x , 1, y_{0}\right)\\
F_{56}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{25}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{25}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{57}\! \left(x \right) &= F_{11}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x , 1\right)\\
F_{59}\! \left(x , y_{0}\right) &= -\frac{-F_{60}\! \left(x , y_{0}\right) y_{0}+F_{60}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{60}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{61}\! \left(x , y_{0}\right)+F_{63}\! \left(x , y_{0}\right)+F_{66}\! \left(x , y_{0}\right)\\
F_{61}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{62}\! \left(x , y_{0}\right)\\
F_{62}\! \left(x , y_{0}\right) &= -\frac{-F_{20}\! \left(x , y_{0}\right) y_{0}+F_{20}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{63}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{64}\! \left(x , y_{0}\right)\\
F_{64}\! \left(x , y_{0}\right) &= F_{65}\! \left(x , 1, y_{0}\right)\\
F_{65}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{30}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{30}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{66}\! \left(x , y_{0}\right) &= F_{34}\! \left(x , y_{0}\right) F_{67}\! \left(x , y_{0}\right)\\
F_{67}\! \left(x , y_{0}\right) &= F_{68}\! \left(x , 1, y_{0}\right)\\
F_{68}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{69}\! \left(x , 1, y_{1}\right) y_{1}-F_{69}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{69}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{70}\! \left(x , y_{0}, y_{1}\right)+F_{71}\! \left(x , y_{0}, y_{1}\right)+F_{72}\! \left(x , y_{0}, y_{1}\right)\\
F_{70}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{71}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{72}\! \left(x , y_{0}, y_{1}\right) &= F_{34}\! \left(x , y_{1}\right) F_{73}\! \left(x , y_{0}, y_{1}\right)\\
F_{73}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{69}\! \left(x , y_{0}, y_{1}\right)+F_{69}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{74}\! \left(x \right) &= F_{66}\! \left(x , 1\right)\\
F_{75}\! \left(x \right) &= F_{11}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{60}\! \left(x , 1\right)\\
\end{align*}\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 78 rules.
Finding the specification took 172 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{59}\! \left(x \right)+F_{6}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{8}\! \left(x , y_{0}\right)\\
F_{8}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y_{0}\right)+F_{55}\! \left(x , y_{0}\right)+F_{57}\! \left(x , y_{0}\right)+F_{9}\! \left(x , y_{0}\right)\\
F_{9}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{11}\! \left(x \right)\\
F_{10}\! \left(x , y_{0}\right) &= -\frac{-F_{8}\! \left(x , y_{0}\right) y_{0}+F_{8}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{13}\! \left(x , y_{0}\right)\\
F_{13}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , 1, y_{0}\right)\\
F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y_{0}, y_{1}\right)+F_{45}\! \left(x , y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{0}, y_{1}\right)+F_{51}\! \left(x , y_{0}, y_{1}\right)+F_{53}\! \left(x , y_{0}, y_{1}\right)\\
F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y_{0}, y_{1}\right)\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{17}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{17}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{17}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{18}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{18}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{18}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{19}\! \left(x , y_{0}\right) y_{0}-F_{19}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{19}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x , y_{0}\right)+F_{43}\! \left(x , y_{0}\right)+F_{7}\! \left(x , y_{0}\right)\\
F_{20}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{21}\! \left(x , y_{0}\right)\\
F_{21}\! \left(x , y_{0}\right) &= F_{22}\! \left(x , 1, y_{0}\right)\\
F_{22}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y_{0}, y_{1}\right)+F_{24}\! \left(x , y_{0}, y_{1}\right)+F_{33}\! \left(x , y_{0}, y_{1}\right)+F_{35}\! \left(x , y_{0}, y_{1}\right)\\
F_{23}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{17}\! \left(x , y_{0}, y_{1}\right)\\
F_{24}\! \left(x , y_{0}, y_{1}\right) &= F_{25}\! \left(x , y_{0}, y_{1}\right) F_{32}\! \left(x , y_{0}\right)\\
F_{25}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{27}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{27}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{27}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{28}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{28}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{28}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{29}\! \left(x , y_{0}\right) y_{0}-F_{29}\! \left(x , y_{1}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{29}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x , y_{0}\right)+F_{31}\! \left(x , y_{0}\right)\\
F_{30}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{19}\! \left(x , y_{0}\right)\\
F_{31}\! \left(x , y_{0}\right) &= F_{29}\! \left(x , y_{0}\right) F_{32}\! \left(x , y_{0}\right)\\
F_{32}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{33}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{34}\! \left(x , y_{0}, y_{1}\right)\\
F_{34}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{22}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{22}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{35}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{1}\right) F_{36}\! \left(x , y_{0}, y_{1}\right)\\
F_{36}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{37}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{37}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{37}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x , y_{0}, y_{1}\right)+F_{39}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)\\
F_{38}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{18}\! \left(x , y_{0}, y_{1}\right)\\
F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{0}\right) F_{40}\! \left(x , y_{0}, y_{1}\right)\\
F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{41}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{28}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{28}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{1}\right) F_{37}\! \left(x , y_{0}, y_{1}\right)\\
F_{43}\! \left(x , y_{0}\right) &= F_{32}\! \left(x , y_{0}\right) F_{44}\! \left(x , y_{0}\right)\\
F_{44}\! \left(x , y_{0}\right) &= F_{37}\! \left(x , 1, y_{0}\right)\\
F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{0}\right) F_{46}\! \left(x , y_{0}, y_{1}\right)\\
F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{47}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{47}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{48}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{48}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{48}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{27}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{27}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{49}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{50}\! \left(x , y_{0}, y_{1}\right)\\
F_{50}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{14}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{14}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x \right) F_{52}\! \left(x , y_{0}, y_{1}\right)\\
F_{52}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{34}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{34}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{53}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{1}\right) F_{54}\! \left(x , y_{0}, y_{1}\right)\\
F_{54}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{36}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{36}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{55}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{56}\! \left(x , y_{0}\right)\\
F_{56}\! \left(x , y_{0}\right) &= F_{34}\! \left(x , 1, y_{0}\right)\\
F_{57}\! \left(x , y_{0}\right) &= F_{32}\! \left(x , y_{0}\right) F_{58}\! \left(x , y_{0}\right)\\
F_{58}\! \left(x , y_{0}\right) &= F_{36}\! \left(x , 1, y_{0}\right)\\
F_{59}\! \left(x \right) &= F_{11}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x , 1\right)\\
F_{61}\! \left(x , y_{0}\right) &= -\frac{-F_{62}\! \left(x , y_{0}\right) y_{0}+F_{62}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{62}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{63}\! \left(x , y_{0}\right)+F_{65}\! \left(x , y_{0}\right)+F_{67}\! \left(x , y_{0}\right)\\
F_{63}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{64}\! \left(x , y_{0}\right)\\
F_{64}\! \left(x , y_{0}\right) &= -\frac{-F_{19}\! \left(x , y_{0}\right) y_{0}+F_{19}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{65}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{66}\! \left(x , y_{0}\right)\\
F_{66}\! \left(x , y_{0}\right) &= F_{27}\! \left(x , 1, y_{0}\right)\\
F_{67}\! \left(x , y_{0}\right) &= F_{32}\! \left(x , y_{0}\right) F_{68}\! \left(x , y_{0}\right)\\
F_{68}\! \left(x , y_{0}\right) &= F_{69}\! \left(x , 1, y_{0}\right)\\
F_{69}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{70}\! \left(x , 1, y_{1}\right) y_{1}-F_{70}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{70}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{71}\! \left(x , y_{0}, y_{1}\right)+F_{72}\! \left(x , y_{0}, y_{1}\right)+F_{73}\! \left(x , y_{0}, y_{1}\right)\\
F_{71}\! \left(x , y_{0}, y_{1}\right) &= F_{38}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{72}\! \left(x , y_{0}, y_{1}\right) &= F_{39}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{73}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{1}\right) F_{74}\! \left(x , y_{0}, y_{1}\right)\\
F_{74}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{70}\! \left(x , y_{0}, y_{1}\right)+F_{70}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{75}\! \left(x \right) &= F_{67}\! \left(x , 1\right)\\
F_{76}\! \left(x \right) &= F_{11}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{62}\! \left(x , 1\right)\\
\end{align*}\)