Av(13254, 13524, 13542, 14253, 15243, 24153, 25143, 35142, 354162, 461325, 465132)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 112, 556, 2811, 14234, 71808, 360568, 1803100, 8988924, 44719588, 222221416, ...

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion" and has 21 rules.

Found on January 24, 2022.

Finding the specification took 111 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 21 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\ F_{6}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y_{0}\right)\\ F_{7}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{5}\! \left(x , y_{0}\right)-F_{5}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{8}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\ F_{9}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{10}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , y_{0}\right)+F_{5}\! \left(x , y_{0}\right)\\ F_{12}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , y_{0}\right)+F_{20}\! \left(x , y_{0}\right)\\ F_{12}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}, 1\right)\\ F_{13}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{14}\! \left(x , 1, y_{0}, y_{1}\right)-F_{14}\! \left(x , \frac{1}{y_{0}}, y_{0}, y_{1}\right)}{-1+y_{0}}\\ F_{14}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{19}\! \left(x , y_{1}, y_{0}\right)\\ F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}\right) F_{9}\! \left(x , y_{0}\right)\\ F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} F_{14}\! \left(x , y_{0}, y_{1}, 1\right)-y_{2} F_{14}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right)}{-y_{2}+y_{1}}\\ F_{19}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{1}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\ F_{20}\! \left(x , y_{0}\right) &= F_{15}\! \left(x , 1, y_{0}\right)\\ \end{align*}\)