###### Av(1324, 4231)
Generating Function
$$\displaystyle \frac{6 x^{7}-58 x^{6}+168 x^{5}-218 x^{4}+152 x^{3}-59 x^{2}+12 x -1}{\left(x -1\right) \left(2 x^{2}-4 x +1\right) \left(2 x -1\right)^{4}}$$
Counting Sequence
1, 1, 2, 6, 22, 86, 336, 1282, 4758, 17234, 61242, 214594, 744594, 2566594, 8809442, ...
Implicit Equation for the Generating Function
$$\displaystyle \left(x -1\right) \left(2 x^{2}-4 x +1\right) \left(2 x -1\right)^{4} F \! \left(x \right)-6 x^{7}+58 x^{6}-168 x^{5}+218 x^{4}-152 x^{3}+59 x^{2}-12 x +1 = 0$$
Recurrence
$$\displaystyle a \! \left(0\right) = 1$$
$$\displaystyle a \! \left(1\right) = 1$$
$$\displaystyle a \! \left(2\right) = 2$$
$$\displaystyle a \! \left(3\right) = 6$$
$$\displaystyle a \! \left(4\right) = 22$$
$$\displaystyle a \! \left(5\right) = 86$$
$$\displaystyle a \! \left(6\right) = 336$$
$$\displaystyle a \! \left(7\right) = 1282$$
$$\displaystyle a \! \left(n +6\right) = -32 a \! \left(n \right)+128 a \! \left(n +1\right)-192 a \! \left(n +2\right)+144 a \! \left(n +3\right)-58 a \! \left(n +4\right)+12 a \! \left(n +5\right)-2, \quad n \geq 8$$
Explicit Closed Form
$$\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(12 \sqrt{2}+12\right) \left(1-\frac{\sqrt{2}}{2}\right)^{-n}}{96}+\frac{\left(-12 \sqrt{2}+12\right) \left(1+\frac{\sqrt{2}}{2}\right)^{-n}}{96}+2+\\\frac{\left(n^{3}-18 n^{2}+59 n -138\right) 2^{n}}{96} & \text{otherwise} \end{array}\right.$$
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point $$(i, j)$$ represents how many permutations have value $$j$$ at index $$i$$ (darker = more).

### This specification was found using the strategy pack "Point And Row Placements" and has 70 rules.

Found on April 26, 2021.

Finding the specification took 233 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 70 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{13}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{13}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{21}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{13}\! \left(x \right) F_{25}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{13}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{38}\! \left(x \right) &= 0\\ F_{39}\! \left(x \right) &= F_{13}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{13}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{13}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{13}\! \left(x \right) F_{35}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{25}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{32} \left(x \right)^{2} F_{13}\! \left(x \right) F_{25}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{13}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{13}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{13}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{54}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{26} \left(x \right)^{2} F_{13}\! \left(x \right) F_{25}\! \left(x \right) F_{29}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Insertion Row Placements" and has 211 rules.

Found on April 26, 2021.

Finding the specification took 13 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 211 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{47}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{38}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{20}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{61}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{70}\! \left(x \right)+F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{12}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{89}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{90}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{96}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{100}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{101}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{133}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{118}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{107}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{10}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{17}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{122}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{123}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{12}\! \left(x \right) F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{12}\! \left(x \right) F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{133}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{134}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{103}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{17}\! \left(x \right) F_{38}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{139}\! \left(x \right)+F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{12}\! \left(x \right) F_{140}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{138}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{12}\! \left(x \right) F_{137}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{38}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{12}\! \left(x \right) F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{38}\! \left(x \right)\\ F_{150}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{151}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{12}\! \left(x \right) F_{152}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{12}\! \left(x \right) F_{155}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{10} \left(x \right)^{3} F_{17}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{12}\! \left(x \right) F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{182}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{174}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{12}\! \left(x \right) F_{164}\! \left(x \right) F_{165}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{169}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{12}\! \left(x \right) F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{172}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{12}\! \left(x \right) F_{171}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{12}\! \left(x \right) F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{12}\! \left(x \right) F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{180}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{166}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{12}\! \left(x \right) F_{166}\! \left(x \right) F_{30}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{182}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{183}\! \left(x \right)+F_{197}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{12}\! \left(x \right) F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{188}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{12}\! \left(x \right) F_{190}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{193}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{14}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{28} \left(x \right)^{3} F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{12}\! \left(x \right) F_{186}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{12}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{205}\! \left(x \right)\\ F_{200}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{201}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{14}\! \left(x \right) F_{164}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{12}\! \left(x \right) F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{200}\! \left(x \right)\\ F_{205}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{206}\! \left(x \right)+F_{208}\! \left(x \right)+F_{210}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{14}\! \left(x \right) F_{164}\! \left(x \right) F_{28}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{12}\! \left(x \right) F_{209}\! \left(x \right)\\ F_{209}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{205}\! \left(x \right)\\ F_{210}\! \left(x \right) &= F_{12}\! \left(x \right) F_{199}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Row And Col Placements" and has 83 rules.

Found on April 26, 2021.

Finding the specification took 206 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 83 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{13}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{13}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{31}\! \left(x \right) &= 0\\ F_{32}\! \left(x \right) &= F_{13}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{13}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{23} \left(x \right)^{2} F_{13}\! \left(x \right) F_{35}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{13}\! \left(x \right) F_{23}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{13}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{13}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{58}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{13}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{13}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{13}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right) F_{35}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{13}\! \left(x \right) F_{63}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{13}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{13}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right) F_{44}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Insertion Col Placements Req Corrob" and has 204 rules.

Found on April 26, 2021.

Finding the specification took 17 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 204 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{17}\! \left(x \right) F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{40}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{46}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{48}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{37}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{36}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{20}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{60}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{14}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{17}\! \left(x \right) F_{69}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{71}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{73}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{8}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{84}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{8}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{8}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{133}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{8}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{20}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{8}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{8}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{11}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{17}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{111}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{112}\! \left(x \right)+F_{120}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{14}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{122}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{123}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{8}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{127}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{128}\! \left(x \right)+F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{126}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{37}\! \left(x \right)\\ F_{139}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{140}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{11} \left(x \right)^{3} F_{17}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)+F_{175}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{160}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{154}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{155}\! \left(x \right)+F_{158}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{76}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{168}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{166}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{157}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{10}\! \left(x \right) F_{37}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{172}\! \left(x \right)+F_{174}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{157}\! \left(x \right) F_{171}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{27}\! \left(x \right) F_{37}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{162}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{175}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{176}\! \left(x \right)+F_{190}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{180}\! \left(x \right)\\ F_{180}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{181}\! \left(x \right)+F_{189}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)\\ F_{182}\! \left(x \right) &= F_{183}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{186}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{14}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{187}\! \left(x \right)\\ F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)\\ F_{188}\! \left(x \right) &= F_{28} \left(x \right)^{3} F_{14}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{189}\! \left(x \right) &= F_{179}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{190}\! \left(x \right) &= F_{191}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{191}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{192}\! \left(x \right)\\ F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{198}\! \left(x \right)\\ F_{193}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{194}\! \left(x \right)+F_{196}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{14}\! \left(x \right) F_{157}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{197}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{198}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{199}\! \left(x \right)+F_{201}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{14}\! \left(x \right) F_{157}\! \left(x \right) F_{28}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{198}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{192}\! \left(x \right) F_{8}\! \left(x \right)\\ \end{align*}

### This specification was found using the strategy pack "Insertion Point Placements" and has 176 rules.

Found on April 26, 2021.

Finding the specification took 103 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 176 equations to clipboard:
\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{26}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{27}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{27}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{68}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{52}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= 2 F_{27}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{32}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{27}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{27}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{37}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{37}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{22}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{103}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{104}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{113}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{114}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{124}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{18}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{20}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{18}\! \left(x \right) F_{37}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{117}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{137}\! \left(x \right) &= 2 F_{83}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{148}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{145}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{18}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{141}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{151}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{18}\! \left(x \right) F_{27}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{155}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{37}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{157}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{26}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{162}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{37}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{169}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)+F_{171}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{14}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{17}\! \left(x \right) F_{172}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{27}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{18}\! \left(x \right) F_{27}\! \left(x \right) F_{37}\! \left(x \right) F_{52}\! \left(x \right)\\ \end{align*}