Av(1324, 24153)
View Raw Data
Counting Sequence
1, 1, 2, 6, 23, 102, 495, 2549, 13682, 75714, 428882, 2474573, 14492346, 85926361, 514763279, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-x +1\right) F \left(x \right)^{3}+\left(x -3\right) F \left(x \right)^{2}+3 F \! \left(x \right)-1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = \frac{24 \left(3 n +4\right) \left(3 n +2\right) a \! \left(n \right)}{\left(2 n +7\right) \left(n +3\right)}-\frac{\left(469 n^{2}+953 n +378\right) a \! \left(n +1\right)}{2 \left(2 n +7\right) \left(n +3\right)}+\frac{3 \left(155 n^{2}+309 n +112\right) a \! \left(n +2\right)}{2 \left(2 n +7\right) \left(n +3\right)}-\frac{3 \left(11 n^{2}+21 n -16\right) a \! \left(n +3\right)}{2 \left(2 n +7\right) \left(n +3\right)}, \quad n \geq 4\)

This specification was found using the strategy pack "Point And Col Placements Tracked Fusion" and has 22 rules.

Found on July 20, 2021.

Finding the specification took 32 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 22 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{8}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{8}\! \left(x \right) &= 0\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= -\frac{y \left(F_{7}\! \left(x , 1\right)-F_{7}\! \left(x , y\right)\right)}{-1+y}\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= y x\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{7}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{17}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)^{2} F_{12}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{7}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Req Corrob" and has 22 rules.

Found on July 20, 2021.

Finding the specification took 35 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 22 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{12}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)^{2} F_{11}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{19}\! \left(x , y\right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ \end{align*}\)