Av(1324, 2413, 3241, 4132)
Generating Function
\(\displaystyle \frac{x^{4}-x^{3}+7 x^{2}-5 x +1}{\left(x^{2}-3 x +1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 204, 623, 1864, 5490, 15970, 45991, 131352, 372541, 1050350, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right)^{2} F \! \left(x \right)-x^{4}+x^{3}-7 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -a \! \left(n \right)+6 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -a \! \left(n \right)+6 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ -\frac{n \left(2 \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}-2 \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}-5 \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}-5 \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}\right)}{5} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 33 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 33 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{13}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)\\
\end{align*}\)