Av(1324, 2341, 24153)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(4 x^{5}-25 x^{4}+54 x^{3}-54 x^{2}+22 x -3\right) \sqrt{1-4 x}-20 x^{5}+69 x^{4}-72 x^{3}+38 x^{2}-10 x +1}{8 \left(x^{2}-3 x +1\right)^{2} \left(x -\frac{1}{4}\right)}\)
Counting Sequence
1, 1, 2, 6, 22, 86, 343, 1374, 5497, 21926, 87176, 345612, 1366960, 5396604, 21275618, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x -1\right) \left(x^{2}-3 x +1\right)^{4} F \left(x \right)^{2}+\left(4 x -1\right) \left(5 x^{4}-16 x^{3}+14 x^{2}-6 x +1\right) \left(x^{2}-3 x +1\right)^{2} F \! \left(x \right)+4 x^{10}-25 x^{9}+98 x^{8}-347 x^{7}+841 x^{6}-1214 x^{5}+1061 x^{4}-561 x^{3}+174 x^{2}-29 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 22\)
\(\displaystyle a \! \left(5\right) = 86\)
\(\displaystyle a \! \left(6\right) = 343\)
\(\displaystyle a \! \left(7\right) = 1374\)
\(\displaystyle a \! \left(8\right) = 5497\)
\(\displaystyle a \! \left(9\right) = 21926\)
\(\displaystyle a \! \left(10\right) = 87176\)
\(\displaystyle a \! \left(n +10\right) = -\frac{8 \left(-1+2 n \right) a \! \left(n \right)}{3 \left(n +10\right)}+\frac{2 \left(51+100 n \right) a \! \left(n +1\right)}{3 \left(n +10\right)}-\frac{\left(1618+1041 n \right) a \! \left(n +2\right)}{3 \left(n +10\right)}+\frac{2 \left(3921+1478 n \right) a \! \left(n +3\right)}{3 \left(n +10\right)}-\frac{\left(19166+5053 n \right) a \! \left(n +4\right)}{3 \left(n +10\right)}+\frac{2 \left(13312+2703 n \right) a \! \left(n +5\right)}{3 \left(n +10\right)}-\frac{22 \left(992+165 n \right) a \! \left(n +6\right)}{3 \left(n +10\right)}+\frac{2 \left(5339+757 n \right) a \! \left(n +7\right)}{3 \left(n +10\right)}-\frac{\left(3054+379 n \right) a \! \left(n +8\right)}{3 \left(n +10\right)}+\frac{2 \left(235+26 n \right) a \! \left(n +9\right)}{3 \left(n +10\right)}, \quad n \geq 11\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Req Corrob Expand Verified" and has 122 rules.

Found on January 22, 2022.

Finding the specification took 672 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 122 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x , 1\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x , y\right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{22}\! \left(x , y\right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x , y\right)+F_{26}\! \left(x , y\right)\\ F_{23}\! \left(x \right) &= 0\\ F_{24}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{25}\! \left(x , y\right) &= -\frac{y \left(F_{22}\! \left(x , 1\right)-F_{22}\! \left(x , y\right)\right)}{-1+y}\\ F_{26}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= y x\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{19}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x , 1\right)\\ F_{33}\! \left(x , y\right) &= F_{108}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x , y\right)+F_{38}\! \left(x , y\right)+F_{73}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{37}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{37}\! \left(x , y\right) &= -\frac{-y F_{35}\! \left(x , y\right)+F_{35}\! \left(x , 1\right)}{-1+y}\\ F_{38}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{4}\! \left(x \right)+F_{40}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{41}\! \left(x , y\right)+F_{46}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= F_{43}\! \left(x , y\right) F_{5}\! \left(x \right)\\ F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{45}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{48}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= -\frac{y \left(F_{51}\! \left(x , 1\right)-F_{51}\! \left(x , y\right)\right)}{-1+y}\\ F_{51}\! \left(x , y\right) &= F_{23}\! \left(x \right)+F_{52}\! \left(x , y\right)+F_{54}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{50}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{54}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{27}\! \left(x , y\right) F_{5}\! \left(x \right)\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{57}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{58}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{82}\! \left(x \right)\\ F_{59}\! \left(x , y\right) &= F_{58}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{5}\! \left(x \right)+F_{60}\! \left(x , y\right)+F_{63}\! \left(x , y\right)+F_{65}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{33}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{5}\! \left(x \right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{64}\! \left(x , y\right) &= -\frac{-y F_{61}\! \left(x , y\right)+F_{61}\! \left(x , 1\right)}{-1+y}\\ F_{65}\! \left(x , y\right) &= F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{69}\! \left(x , y\right) F_{79}\! \left(x \right)\\ F_{70}\! \left(x , y\right) &= F_{27}\! \left(x , y\right) F_{69}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= F_{23}\! \left(x \right)+F_{70}\! \left(x , y\right)+F_{71}\! \left(x , y\right)+F_{73}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= F_{72}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{72}\! \left(x , y\right) &= -\frac{-y F_{34}\! \left(x , y\right)+F_{34}\! \left(x , 1\right)}{-1+y}\\ F_{39}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)+F_{73}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{75}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{75}\! \left(x , y\right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x , y\right)\\ F_{76}\! \left(x \right) &= F_{35}\! \left(x , 1\right)\\ F_{77}\! \left(x , y\right) &= F_{78}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= -\frac{y \left(F_{40}\! \left(x , 1\right)-F_{40}\! \left(x , y\right)\right)}{-1+y}\\ F_{79}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{79}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{82}\! \left(x \right) &= \frac{F_{83}\! \left(x \right)}{F_{8}\! \left(x \right)}\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= -F_{105}\! \left(x \right)-F_{5}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{21}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{8}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{51}\! \left(x , 1\right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{101}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{22}\! \left(x , 1\right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{8}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{101}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{25}\! \left(x , 1\right)\\ F_{105}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right) F_{43}\! \left(x , y\right) F_{5}\! \left(x \right)\\ F_{107}\! \left(x , y\right) &= -\frac{-y F_{20}\! \left(x , y\right)+F_{20}\! \left(x , 1\right)}{-1+y}\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)\\ F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)+F_{33}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)\\ F_{112}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{114}\! \left(x , y\right)\\ F_{113}\! \left(x , y\right) &= -\frac{F_{51}\! \left(x , 1\right)-F_{51}\! \left(x , y\right)}{-1+y}\\ F_{114}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)\\ F_{115}\! \left(x , y\right) &= F_{101}\! \left(x \right) F_{116}\! \left(x , y\right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{116}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)+F_{121}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{118}\! \left(x , y\right)+F_{119}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= -\frac{F_{22}\! \left(x , 1\right)-F_{22}\! \left(x , y\right)}{-1+y}\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)\\ F_{120}\! \left(x , y\right) &= F_{101}\! \left(x \right) F_{116}\! \left(x , y\right) F_{8}\! \left(x \right)\\ F_{121}\! \left(x , y\right) &= -\frac{-y F_{118}\! \left(x , y\right)+F_{118}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Expand Verified" and has 182 rules.

Found on January 23, 2022.

Finding the specification took 607 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 182 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{115}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{26}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{11}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{11}\! \left(x \right) F_{41}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x \right)+F_{43}\! \left(x \right)+F_{61}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right) F_{45}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11}\! \left(x \right) F_{45}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{11}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{11}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{11}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{11}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x , 1\right)\\ F_{63}\! \left(x , y\right) &= -\frac{-y F_{64}\! \left(x , y\right)+F_{64}\! \left(x , 1\right)}{-1+y}\\ F_{64}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{65}\! \left(x , y\right)+F_{66}\! \left(x , y\right)+F_{69}\! \left(x , y\right)+F_{70}\! \left(x \right)\\ F_{65}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{64}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{45}\! \left(x \right) F_{51}\! \left(x \right) F_{68}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= y x\\ F_{69}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x , 1\right)\\ F_{71}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{72}\! \left(x , y\right)\\ F_{72}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{73}\! \left(x , y\right)+F_{74}\! \left(x , y\right)+F_{75}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{68}\! \left(x , y\right) F_{72}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{72}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{76}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= F_{77}\! \left(x , y\right)+F_{80}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{71}\! \left(x , y\right)+F_{78}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{68}\! \left(x , y\right) F_{77}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{76}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= F_{81}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{51}\! \left(x \right) F_{82}\! \left(x , y\right)\\ F_{82}\! \left(x , y\right) &= F_{83}\! \left(x \right)+F_{94}\! \left(x , y\right)\\ F_{83}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{11}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{11}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{11}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{11}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{94}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= F_{96}\! \left(x , y\right)\\ F_{96}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{68}\! \left(x , y\right) F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{97}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= 2 F_{19}\! \left(x \right)+F_{101}\! \left(x , y\right)+F_{107}\! \left(x , y\right)\\ F_{101}\! \left(x , y\right) &= F_{102}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)+F_{105}\! \left(x , y\right)+F_{19}\! \left(x \right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{104}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{49}\! \left(x \right)\\ F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{106}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right)+F_{112}\! \left(x , y\right)\\ F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\ F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= F_{109}\! \left(x , y\right) F_{11}\! \left(x \right)\\ F_{112}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{113}\! \left(x , y\right)\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)\\ F_{114}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{112}\! \left(x , y\right)\\ F_{115}\! \left(x \right) &= F_{11}\! \left(x \right) F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x , 1\right)\\ F_{117}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{118}\! \left(x , y\right)+F_{129}\! \left(x , y\right)+F_{177}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= F_{119}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{118}\! \left(x , y\right)+F_{120}\! \left(x , y\right)+F_{125}\! \left(x , y\right)\\ F_{120}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{121}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{122}\! \left(x , y\right)+F_{123}\! \left(x , y\right)+F_{125}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{121}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{124}\! \left(x , y\right)\\ F_{124}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)+F_{48}\! \left(x \right)\\ F_{125}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{126}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{127}\! \left(x , y\right)+F_{128}\! \left(x , y\right)+F_{71}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{126}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{126}\! \left(x , y\right)\\ F_{129}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{130}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{131}\! \left(x , y\right)+F_{141}\! \left(x , y\right)+F_{157}\! \left(x , y\right)+F_{168}\! \left(x , y\right)\\ F_{131}\! \left(x , y\right) &= F_{132}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{132}\! \left(x , y\right) &= F_{119}\! \left(x , y\right)+F_{133}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= F_{134}\! \left(x , y\right)+F_{135}\! \left(x , y\right)+F_{136}\! \left(x , y\right)+F_{137}\! \left(x , y\right)+F_{19}\! \left(x \right)\\ F_{134}\! \left(x , y\right) &= F_{133}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{135}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{133}\! \left(x , y\right)\\ F_{136}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{119}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= F_{138}\! \left(x , y\right)\\ F_{138}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{139}\! \left(x , y\right)\\ F_{139}\! \left(x , y\right) &= 3 F_{19}\! \left(x \right)+F_{140}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\ F_{140}\! \left(x , y\right) &= F_{139}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{141}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{142}\! \left(x , y\right)\\ F_{142}\! \left(x , y\right) &= F_{130}\! \left(x , y\right)+F_{143}\! \left(x , y\right)\\ F_{143}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)+F_{145}\! \left(x , y\right)+F_{147}\! \left(x , y\right)+F_{149}\! \left(x , y\right)+F_{151}\! \left(x , y\right)+F_{19}\! \left(x \right)\\ F_{144}\! \left(x , y\right) &= F_{143}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{145}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{146}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= -\frac{-y F_{143}\! \left(x , y\right)+F_{143}\! \left(x , 1\right)}{-1+y}\\ F_{147}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{148}\! \left(x , y\right)\\ F_{148}\! \left(x , y\right) &= -\frac{-y F_{133}\! \left(x , y\right)+F_{133}\! \left(x , 1\right)}{-1+y}\\ F_{149}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{150}\! \left(x , y\right)\\ F_{150}\! \left(x , y\right) &= -\frac{-y F_{119}\! \left(x , y\right)+F_{119}\! \left(x , 1\right)}{-1+y}\\ F_{151}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)\\ F_{153}\! \left(x , y\right) &= F_{149}\! \left(x , y\right)+F_{152}\! \left(x , y\right)+F_{154}\! \left(x , y\right)+F_{155}\! \left(x , y\right)+F_{19}\! \left(x \right)\\ F_{130}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)+F_{153}\! \left(x , y\right)\\ F_{154}\! \left(x , y\right) &= F_{153}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{155}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{156}\! \left(x , y\right)\\ F_{156}\! \left(x , y\right) &= -\frac{-y F_{153}\! \left(x , y\right)+F_{153}\! \left(x , 1\right)}{-1+y}\\ F_{157}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{158}\! \left(x , y\right)\\ F_{158}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{159}\! \left(x , y\right)+F_{160}\! \left(x , y\right)+F_{162}\! \left(x , y\right)+F_{164}\! \left(x , y\right)\\ F_{159}\! \left(x , y\right) &= F_{158}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{160}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{161}\! \left(x , y\right)\\ F_{161}\! \left(x , y\right) &= -\frac{-y F_{158}\! \left(x , y\right)+F_{158}\! \left(x , 1\right)}{-1+y}\\ F_{162}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{163}\! \left(x , y\right)\\ F_{163}\! \left(x , y\right) &= -\frac{-y F_{121}\! \left(x , y\right)+F_{121}\! \left(x , 1\right)}{-1+y}\\ F_{117}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{164}\! \left(x , y\right)+F_{165}\! \left(x , y\right)+F_{166}\! \left(x , y\right)\\ F_{165}\! \left(x , y\right) &= F_{117}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{166}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{167}\! \left(x , y\right)\\ F_{167}\! \left(x , y\right) &= -\frac{-y F_{117}\! \left(x , y\right)+F_{117}\! \left(x , 1\right)}{-1+y}\\ F_{168}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{169}\! \left(x , y\right)\\ F_{169}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{164}\! \left(x , y\right)+F_{170}\! \left(x , y\right)+F_{171}\! \left(x , y\right)+F_{173}\! \left(x , y\right)+F_{175}\! \left(x , y\right)\\ F_{170}\! \left(x , y\right) &= F_{169}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{172}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= -\frac{-y F_{169}\! \left(x , y\right)+F_{169}\! \left(x , 1\right)}{-1+y}\\ F_{173}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{174}\! \left(x , y\right)\\ F_{174}\! \left(x , y\right) &= -\frac{-y F_{126}\! \left(x , y\right)+F_{126}\! \left(x , 1\right)}{-1+y}\\ F_{175}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{176}\! \left(x , y\right)\\ F_{176}\! \left(x , y\right) &= -\frac{-y F_{76}\! \left(x , y\right)+F_{76}\! \left(x , 1\right)}{-1+y}\\ F_{177}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{178}\! \left(x , y\right)\\ F_{178}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{164}\! \left(x , y\right)+F_{175}\! \left(x , y\right)+F_{179}\! \left(x , y\right)+F_{180}\! \left(x , y\right)\\ F_{179}\! \left(x , y\right) &= F_{178}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\ F_{180}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{181}\! \left(x , y\right)\\ F_{181}\! \left(x , y\right) &= -\frac{-y F_{178}\! \left(x , y\right)+F_{178}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Req Corrob Expand Verified" and has 226 rules.

Found on January 23, 2022.

Finding the specification took 1486 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 226 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{44}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x , 1\right)\\ F_{47}\! \left(x , y\right) &= -\frac{-y F_{48}\! \left(x , y\right)+F_{48}\! \left(x , 1\right)}{-1+y}\\ F_{48}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{48}\! \left(x , y\right) F_{50}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= y x\\ F_{51}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{47}\! \left(x , y\right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x , 1\right)\\ F_{59}\! \left(x , y\right) &= F_{56}\! \left(x \right)+F_{58}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)+F_{67}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right) F_{62}\! \left(x , y\right) F_{65}\! \left(x \right) F_{66}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{63}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{50}\! \left(x , y\right) F_{62}\! \left(x , y\right)\\ F_{65}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{66}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{50}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{68}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{69}\! \left(x , y\right)\\ F_{69}\! \left(x , y\right) &= F_{193}\! \left(x , y\right)+F_{70}\! \left(x , y\right)\\ F_{70}\! \left(x , y\right) &= F_{71}\! \left(x , y\right)+F_{72}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= -\frac{-y F_{59}\! \left(x , y\right)+F_{59}\! \left(x , 1\right)}{-1+y}\\ F_{72}\! \left(x , y\right) &= F_{50}\! \left(x , y\right) F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{55}\! \left(x \right)+F_{74}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{75}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= -\frac{y \left(F_{76}\! \left(x , 1\right)-F_{76}\! \left(x , y\right)\right)}{-1+y}\\ F_{77}\! \left(x , y\right) &= F_{76}\! \left(x , y\right)+F_{82}\! \left(x \right)\\ F_{77}\! \left(x , y\right) &= F_{78}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{79}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= F_{191}\! \left(x , y\right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= \frac{F_{81}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{84}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= \frac{F_{89}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x , 1\right)\\ F_{96}\! \left(x , y\right) &= -\frac{y \left(F_{97}\! \left(x , 1\right)-F_{97}\! \left(x , y\right)\right)}{-1+y}\\ F_{97}\! \left(x , y\right) &= F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{50}\! \left(x , y\right) F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{113}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{5}\! \left(x \right)\\ F_{102}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{50}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\ F_{104}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)\\ F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right) F_{12}\! \left(x \right)\\ F_{106}\! \left(x , y\right) &= F_{107}\! \left(x , y\right)+F_{111}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{108}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{103}\! \left(x , 1\right)\\ F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right) F_{62}\! \left(x , y\right)\\ F_{112}\! \left(x , y\right) &= -\frac{y \left(F_{103}\! \left(x , 1\right)-F_{103}\! \left(x , y\right)\right)}{-1+y}\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)\\ F_{114}\! \left(x , y\right) &= F_{115}\! \left(x , y\right) F_{12}\! \left(x \right)\\ F_{116}\! \left(x , y\right) &= F_{115}\! \left(x , y\right) F_{50}\! \left(x , y\right)\\ F_{116}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)\\ F_{118}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)+F_{151}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{118}\! \left(x , y\right) F_{12}\! \left(x \right)\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)+F_{138}\! \left(x \right)\\ F_{121}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{124}\! \left(x , y\right)\\ F_{124}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)+F_{132}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{126}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= F_{128}\! \left(x , y\right) F_{129}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{128}\! \left(x , y\right) &= -\frac{F_{103}\! \left(x , 1\right)-F_{103}\! \left(x , y\right)}{-1+y}\\ F_{129}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{12}\! \left(x \right) F_{129}\! \left(x \right)\\ F_{132}\! \left(x , y\right) &= F_{133}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= -\frac{F_{134}\! \left(x , 1\right)-F_{134}\! \left(x , y\right)}{-1+y}\\ F_{134}\! \left(x , y\right) &= F_{135}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\ F_{135}\! \left(x , y\right) &= F_{136}\! \left(x , y\right)\\ F_{136}\! \left(x , y\right) &= F_{129}\! \left(x \right) F_{137}\! \left(x , y\right) F_{6}\! \left(x \right)\\ F_{137}\! \left(x , y\right) &= -\frac{y \left(F_{103}\! \left(x , 1\right)-F_{103}\! \left(x , y\right)\right)}{-1+y}\\ F_{138}\! \left(x \right) &= -F_{147}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{12}\! \left(x \right) F_{142}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{146}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{110}\! \left(x \right) F_{129}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{134}\! \left(x , 1\right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{149}\! \left(x \right)\\ F_{148}\! \left(x \right) &= -F_{56}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{12}\! \left(x \right) F_{147}\! \left(x \right)\\ F_{151}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{153}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)+F_{155}\! \left(x , y\right)\\ F_{154}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{153}\! \left(x , y\right)\\ F_{154}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)\\ F_{156}\! \left(x , y\right) &= F_{155}\! \left(x , y\right)+F_{172}\! \left(x \right)\\ F_{156}\! \left(x , y\right) &= F_{157}\! \left(x , y\right)+F_{166}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= F_{158}\! \left(x , y\right) F_{159}\! \left(x \right)\\ F_{158}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)+F_{109}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{12}\! \left(x \right) F_{162}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{164}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{129}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{12}\! \left(x \right) F_{129}\! \left(x \right) F_{160}\! \left(x \right)\\ F_{166}\! \left(x , y\right) &= F_{167}\! \left(x , y\right)\\ F_{167}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{168}\! \left(x , y\right)\\ F_{168}\! \left(x , y\right) &= -\frac{-y F_{169}\! \left(x , y\right)+F_{169}\! \left(x , 1\right)}{-1+y}\\ F_{169}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)+F_{170}\! \left(x \right)\\ F_{170}\! \left(x \right) &= \frac{F_{171}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{171}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{174}\! \left(x \right)\\ F_{173}\! \left(x \right) &= F_{109}\! \left(x \right) F_{159}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{12}\! \left(x \right) F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{169}\! \left(x , 1\right)\\ F_{177}\! \left(x \right) &= F_{178}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\ F_{179}\! \left(x \right) &= F_{12}\! \left(x \right) F_{129}\! \left(x \right) F_{180}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{180}\! \left(x \right) &= F_{181}\! \left(x , 1\right)\\ F_{181}\! \left(x , y\right) &= -\frac{-y F_{182}\! \left(x , y\right)+F_{182}\! \left(x , 1\right)}{-1+y}\\ F_{182}\! \left(x , y\right) &= -\frac{-y F_{158}\! \left(x , y\right)+F_{158}\! \left(x , 1\right)}{-1+y}\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{12}\! \left(x \right) F_{185}\! \left(x \right)\\ F_{185}\! \left(x \right) &= F_{186}\! \left(x , 1\right)\\ F_{187}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{186}\! \left(x , y\right)\\ F_{187}\! \left(x , y\right) &= F_{188}\! \left(x , y\right)\\ F_{188}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{189}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{189}\! \left(x , y\right) F_{50}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{155}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{192}\! \left(x , y\right)\\ F_{192}\! \left(x , y\right) &= F_{186}\! \left(x , y\right) F_{50}\! \left(x , y\right)\\ F_{193}\! \left(x , y\right) &= F_{194}\! \left(x , y\right)\\ F_{194}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{195}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\ F_{196}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{195}\! \left(x , y\right)\\ F_{196}\! \left(x , y\right) &= F_{197}\! \left(x , y\right)\\ F_{198}\! \left(x , y\right) &= F_{197}\! \left(x , y\right)+F_{212}\! \left(x , y\right)\\ F_{199}\! \left(x , y\right) &= F_{198}\! \left(x , y\right)+F_{209}\! \left(x , y\right)\\ F_{199}\! \left(x , y\right) &= F_{191}\! \left(x , y\right)+F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{204}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{5}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\ F_{205}\! \left(x \right) &= F_{12}\! \left(x \right) F_{206}\! \left(x \right)\\ F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\ F_{208}\! \left(x \right) &= F_{12}\! \left(x \right) F_{185}\! \left(x \right)\\ F_{209}\! \left(x , y\right) &= F_{210}\! \left(x , y\right)\\ F_{210}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{211}\! \left(x , y\right)\\ F_{211}\! \left(x , y\right) &= -\frac{-y F_{79}\! \left(x , y\right)+F_{79}\! \left(x , 1\right)}{-1+y}\\ F_{212}\! \left(x , y\right) &= F_{213}\! \left(x , y\right)\\ F_{213}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{62}\! \left(x , y\right) F_{65}\! \left(x \right)\\ F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{12}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{219}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{129}\! \left(x \right) F_{222}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{182}\! \left(x , 1\right)\\ F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{225}\! \left(x , 1\right)\\ F_{225}\! \left(x , y\right) &= -\frac{y \left(F_{134}\! \left(x , 1\right)-F_{134}\! \left(x , y\right)\right)}{-1+y}\\ \end{align*}\)