Av(1324, 2341, 2413, 3142)
Generating Function
\(\displaystyle \frac{x^{7}-5 x^{6}+12 x^{5}-23 x^{4}+33 x^{3}-24 x^{2}+8 x -1}{\left(x^{3}-2 x^{2}+3 x -1\right) \left(x^{2}-3 x +1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 206, 641, 1964, 5936, 17726, 52375, 153316, 445121, 1282936, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right) \left(x^{2}-3 x +1\right)^{2} F \! \left(x \right)-x^{7}+5 x^{6}-12 x^{5}+23 x^{4}-33 x^{3}+24 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 65\)
\(\displaystyle a \! \left(6\right) = 206\)
\(\displaystyle a \! \left(7\right) = 641\)
\(\displaystyle a \! \left(n +7\right) = a \! \left(n \right)-8 a \! \left(n +1\right)+26 a \! \left(n +2\right)-47 a \! \left(n +3\right)+52 a \! \left(n +4\right)-31 a \! \left(n +5\right)+9 a \! \left(n +6\right), \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 65\)
\(\displaystyle a \! \left(6\right) = 206\)
\(\displaystyle a \! \left(7\right) = 641\)
\(\displaystyle a \! \left(n +7\right) = a \! \left(n \right)-8 a \! \left(n +1\right)+26 a \! \left(n +2\right)-47 a \! \left(n +3\right)+52 a \! \left(n +4\right)-31 a \! \left(n +5\right)+9 a \! \left(n +6\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-115 \left(\left(\mathrm{I}+\frac{\sqrt{23}}{23}\right) \sqrt{3}+\frac{3 \,\mathrm{I} \sqrt{23}}{23}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+4600-230 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{4 \sqrt{23}}{23}\right) \sqrt{3}-\frac{12 \,\mathrm{I} \sqrt{23}}{23}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{6900}\\+\\\frac{\left(230 \left(\left(\mathrm{I}-\frac{4 \sqrt{23}}{23}\right) \sqrt{3}-\frac{12 \,\mathrm{I} \sqrt{23}}{23}+1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600+115 \left(\left(\mathrm{I}-\frac{\sqrt{23}}{23}\right) \sqrt{3}+\frac{3 \,\mathrm{I} \sqrt{23}}{23}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{6900}\\+\\\frac{\left(\left(80 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{23}-460 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600+\left(10 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}+230 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{6900}\\+\frac{\left(1380 n -828 \sqrt{5}-6900\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{6900}+\frac{\left(n +\frac{3 \sqrt{5}}{5}-5\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{5} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 29 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 29 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{14}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{14}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right) F_{19}\! \left(x \right)\\
\end{align*}\)