Av(1324, 2143, 2413)
Generating Function
\(\displaystyle \frac{-2 \sqrt{-4 x +1}\, x +\sqrt{-4 x +1}-4 x +1}{8 x^{2}-10 x +2}\)
Counting Sequence
1, 1, 2, 6, 21, 77, 287, 1079, 4082, 15522, 59280, 227240, 873886, 3370030, 13027730, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x -1\right) \left(x -1\right)^{2} F \left(x
\right)^{2}+\left(4 x -1\right) \left(x -1\right) F \! \left(x \right)+x^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{4 \left(1+2 n \right) a \! \left(n \right)}{n +3}-\frac{2 \left(8+7 n \right) a \! \left(n +1\right)}{n +3}+\frac{\left(15+7 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{4 \left(1+2 n \right) a \! \left(n \right)}{n +3}-\frac{2 \left(8+7 n \right) a \! \left(n +1\right)}{n +3}+\frac{\left(15+7 n \right) a \! \left(n +2\right)}{n +3}, \quad n \geq 3\)
This specification was found using the strategy pack "Point Placements" and has 22 rules.
Found on July 23, 2021.Finding the specification took 7 seconds.
Copy 22 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right) F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{12}\! \left(x \right)\\
\end{align*}\)