Av(1324, 1432, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x^{2}-3 x +1\right) \left(x -1\right)^{6}}{5 x^{8}-31 x^{7}+83 x^{6}-134 x^{5}+144 x^{4}-99 x^{3}+42 x^{2}-10 x +1}\)
Counting Sequence
1, 1, 2, 6, 21, 75, 259, 862, 2808, 9090, 29489, 96076, 314011, 1027749, 3364559, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(5 x^{8}-31 x^{7}+83 x^{6}-134 x^{5}+144 x^{4}-99 x^{3}+42 x^{2}-10 x +1\right) F \! \left(x \right)-\left(x^{2}-3 x +1\right) \left(x -1\right)^{6} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 75\)
\(\displaystyle a \! \left(6\right) = 259\)
\(\displaystyle a \! \left(7\right) = 862\)
\(\displaystyle a \! \left(8\right) = 2808\)
\(\displaystyle a \! \left(n +8\right) = -5 a \! \left(n \right)+31 a \! \left(n +1\right)-83 a \! \left(n +2\right)+134 a \! \left(n +3\right)-144 a \! \left(n +4\right)+99 a \! \left(n +5\right)-42 a \! \left(n +6\right)+10 a \! \left(n +7\right), \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle -\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +6}}{4793572849}-\frac{5709408815 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +6}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +5}}{4793572849}+\frac{32981928898 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +5}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +4}}{4793572849}-\frac{80666877828 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +4}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +3}}{4793572849}+\frac{118306952685 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +3}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +2}}{4793572849}-\frac{113488246848 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +2}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +1}}{4793572849}+\frac{63748274858 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n -1}}{4793572849}+\frac{2745427992 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n -1}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n}}{4793572849}-\frac{19623008826 \mathit{RootOf} \left(5 Z^{8}-31 Z^{7}+83 Z^{6}-134 Z^{5}+144 Z^{4}-99 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n}}{4793572849}+\left(\left\{\begin{array}{cc}\frac{1}{5} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 118 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 118 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{51}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{52}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{60}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{64}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{75}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{101}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{102}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{105}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{106}\! \left(x \right)+F_{108}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{111}\! \left(x \right) &= 3 F_{19}\! \left(x \right)+F_{112}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{100}\! \left(x \right)\\ \end{align*}\)