Av(1324, 1432, 2431, 3412)
Generating Function
\(\displaystyle \frac{x^{6}+2 x^{5}-4 x^{4}+11 x^{3}-13 x^{2}+6 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 186, 526, 1449, 3928, 10540, 28091, 74518, 197018, 519629, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{6}+2 x^{5}-4 x^{4}+11 x^{3}-13 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 186\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-2 n +5, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 186\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-2 n +5, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(38 \sqrt{5}-70\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\frac{\left(-38 \sqrt{5}-70\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{20}-2 n -\frac{3 \,2^{n}}{4}+\\5 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Row Placements" and has 91 rules.
Found on July 23, 2021.Finding the specification took 5 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 91 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{19}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{41}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{19}\! \left(x \right) F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)+F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= x\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{19}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{19}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= 0\\
F_{33}\! \left(x \right) &= F_{19}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{19}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{19}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{19}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x \right)+F_{6}\! \left(x \right)+F_{79}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{19}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x \right)+F_{48}\! \left(x \right)+F_{57}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{19}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{50}\! \left(x \right)+F_{51}\! \left(x \right)+F_{53}\! \left(x \right)+F_{55}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{19}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{19}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)+F_{50}\! \left(x \right)+F_{51}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{17}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{19}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{62}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{19}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{19}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{68}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{19}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{73}\! \left(x \right)+F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{19}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{19}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{19}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{19}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{19}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)+F_{43}\! \left(x \right)+F_{6}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{19}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)+F_{81}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{19}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= 2 F_{23}\! \left(x \right)+F_{1}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{19}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x \right)+F_{81}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{19}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)+F_{43}\! \left(x \right)+F_{89}\! \left(x \right)\\
\end{align*}\)