Av(1324, 1432, 2143)
View Raw Data
Generating Function
\(\displaystyle \frac{-x \left(x^{2}-x +1\right)^{2} \sqrt{1-4 x}+3 x^{5}-14 x^{4}+27 x^{3}-26 x^{2}+13 x -2}{2 x^{6}+4 x^{5}-22 x^{4}+38 x^{3}-32 x^{2}+14 x -2}\)
Counting Sequence
1, 1, 2, 6, 21, 77, 289, 1103, 4261, 16603, 65100, 256466, 1014107, 4021836, 15988827, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{6}+2 x^{5}-11 x^{4}+19 x^{3}-16 x^{2}+7 x -1\right) F \left(x \right)^{2}+\left(-3 x^{5}+14 x^{4}-27 x^{3}+26 x^{2}-13 x +2\right) F \! \left(x \right)+x^{5}-4 x^{4}+9 x^{3}-10 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 77\)
\(\displaystyle a \! \left(6\right) = 289\)
\(\displaystyle a \! \left(7\right) = 1103\)
\(\displaystyle a \! \left(8\right) = 4261\)
\(\displaystyle a \! \left(n +9\right) = -\frac{2 \left(1+2 n \right) a \! \left(n \right)}{8+n}+\frac{3 \left(29+4 n \right) a \! \left(8+n \right)}{8+n}-\frac{3 \left(n -4\right) a \! \left(n +1\right)}{8+n}+\frac{\left(23+49 n \right) a \! \left(n +2\right)}{8+n}-\frac{4 \left(67+35 n \right) a \! \left(n +3\right)}{8+n}+\frac{9 \left(77+24 n \right) a \! \left(n +4\right)}{8+n}-\frac{\left(947+214 n \right) a \! \left(n +5\right)}{8+n}+\frac{6 \left(127+23 n \right) a \! \left(n +6\right)}{8+n}-\frac{\left(361+56 n \right) a \! \left(n +7\right)}{8+n}, \quad n \geq 9\)

This specification was found using the strategy pack "Point Placements Req Corrob Expand Verified" and has 23 rules.

Found on January 21, 2022.

Finding the specification took 7 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{15}\! \left(x \right) F_{22}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{0}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22} \left(x \right)^{2} F_{15}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Row And Col Placements Expand Verified" and has 27 rules.

Found on January 21, 2022.

Finding the specification took 14 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{15}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{15}\! \left(x \right) F_{24}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= \frac{F_{10}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{10}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{12}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{16}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= \frac{F_{14}\! \left(x \right)}{F_{15}\! \left(x \right)}\\ F_{14}\! \left(x \right) &= -F_{1}\! \left(x \right)+F_{0}\! \left(x \right)\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{15}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{24} \left(x \right)^{2} F_{15}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Expand Verified" and has 25 rules.

Found on January 21, 2022.

Finding the specification took 7 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 25 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{0}\! \left(x \right) F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{16}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{13}\! \left(x \right) F_{18}\! \left(x \right)}\\ F_{17}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18} \left(x \right)^{2} F_{13}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ \end{align*}\)